• Title/Summary/Keyword: 통합적 영재프로그램

Search Result 42, Processing Time 0.028 seconds

A study of web component model analysis and design using EJB driven (EJB기반 웹 컴포넌트 모델 분석 및 설계에 관한 연구)

  • 이돈양;송영재
    • Proceedings of the IEEK Conference
    • /
    • 2002.06c
    • /
    • pp.157-160
    • /
    • 2002
  • 최근에 인터넷 및 웹의 급속한 발전과 더불어 S/W 개발의 새로운 방법으로 컴포넌트가 대두되고 있다. 이는 빠른 시간 안에 원하는 소프트웨어 제품을 적은 비용과 최소한의 노력으로 생산할 수 있어 효율적인 시스템 개발 및 소프트웨어 재사용에 많은 이점을 가질 수 있다 그러나 현재 사용되고 있는 COM, CORBA등은 프로그램 작성뿐만 아니라, 분산 시스템 하의 서로 다른 플랫폼에서 운영상의 문제점들이 발생하게 되었다. 본 논문에서 제시한 EJB 방식의 아키텍쳐 시스템은 서로 다른 네트워크 환경과 이기종의 시스템에 존재하는 프로그램 객체들을 동일 시스템에서 사용하는 것처럼 통합을 가능하게 해주고 있다. 그리고 사례연구를 통하여 웹 컴포넌트의 모델분석과 설계를 하여 빈(Bean)을 생성하였으며, 결론으로 COM., CORBA Component(CCM), EJB기반 컴포넌트를 비교하였다.

  • PDF

The Development and Application of Girih tiling Program for the Math-Gifted Student in Elementary School (Girih 타일링을 이용한 초등수학영재 프로그램 개발 및 적용 연구)

  • Park, Hye-Jeong;Cho, Young-Mi
    • Journal of Gifted/Talented Education
    • /
    • v.22 no.3
    • /
    • pp.619-637
    • /
    • 2012
  • The purpose of this study is to develop a new program for elementary math-gifted students by using 'Girih Tililng' and apply it to the elementary students to improve their math-ability. Girih Tililng is well known for 'the secrets of mathematics hidden in Mosque decoration' with lots of recent attention from the world. The process of this study is as follows; (1) Reference research has been done for various tiling theories and the theories have been utilized for making this study applicable. (2) The characteristic features of Mosque tiles and their basic structures have been analyzed. After logical examination of the patterns, their mathematic attributes have been found out. (3) After development of Girih tiling program, the program has been applied to math-gifted students and the program has been modified and complemented. This program which has been developed for math-gifted students is called 'Exploring the Secrets of Girih Hidden in Mosque Patterns'. The program was based on the Renzulli's three-part in-depth learning. The first part of the in-depth learning activity, as a research stage, is designed to examine Islamic patterns in various ways and get the gifted students to understand and have them motivated to learn the concept of the tiling, understanding the characteristics of Islamic patterns, investigating Islamic design, and experiencing the Girih tiles. The second part of the in-depth learning activity, as a discovery stage, is focused on investigating the mathematical features of the Girih tile, comparing Girih tiled patterns with non-Girih tiled ones, investigating the mathematical characteristics of the five Girih tiles, and filling out the blank of Islamic patterns. The third part of the in-depth learning activity, as an inquiry or a creative stage, is planned to show the students' mathematical creativity by thinking over different types of Girih tiling, making the students' own tile patterns, presenting artifacts and reflecting over production process. This program was applied to 6 students who were enrolled in an unified(math and science) gifted class of D elementary school in Daejeon. After analyzing the results produced by its application, the program was modified and complemented repeatedly. It is expected that this program and its materials used in this study will guide a direction of how to develop methodical materials for math-gifted education in elementary schools. This program is originally developed for gifted education in elementary schools, but for further study, it is hoped that this study and the program will be also utilized in the field of math-gifted or unified gifted education in secondary schools in connection with 'Penrose Tiling' or material of 'quasi-crystal'.

Secondary Teachers' Perceptions and Needs Analysis on Integrative STEM Education (통합 STEM 교육에 대한 중등 교사의 인식과 요구)

  • Lee, Hyo-Nyong;Son, Dong-Il;Kwon, Hyuk-Soo;Park, Kyung-Suk;Han, In-Ki;Jung, Hyun-Il;Lee, Seong-Soo;Oh, Hee-Jin;Nam, Jung-Chul;Oh, Young-Jai;Phang, Seong-Hye;Seo, Bo-Hyun
    • Journal of The Korean Association For Science Education
    • /
    • v.32 no.1
    • /
    • pp.30-45
    • /
    • 2012
  • Educational communities around the world have concentrated on integrative efforts among science, technology, engineering and mathematics (Science, Technology, Engineering, and Mathematics: STEM) subjects. Korea has focused on integrative education among STEAM (Science, Technology, Engineering, Arts, and Mathematics) school subjects to raise talented human resources in the fields of science and technology. The purpose of this study was to analyze secondary school science, technology, and mathematics teacher's perceptions and needs toward integrated education and integrative STEM education. A total of 251 secondary school teachers from all areas of the country who have taught science, mathematics, and technology were surveyed by using a self-reported instrument. The findings were as follows: First, teachers have used little integrated education in their classes due to insufficient time in the actual preparation of the integrated education and the lack of expertise, teaching experience, and teaching-learning materials for the integrated education, while they have positive thoughts about the need of integrated education. Second, they presented several needs to facilitate the integrated education: development of a variety of integrated programs, school administrative and financial support, and in-service teachers' training. Third, overall perception toward integrated STEM education was not sufficient, but most teachers perceived the need toward integrated STEM education due to students' development in their creativity, thinking skills, and adaptability. Fourth, they perceived that it was imperative to develop the various integrated STEM education programs, distribute the materials, and help STEM teachers' understanding toward integrated STEM education. Fifth, they perceived that the most relevant method to integrate STEM subjects was the problem solving approach. In addition, they appreciate that the integrated STEM education is highly efficient in not only developing integrated problem solving skills and STEM related literacy, but also in positively impacting the rise of talented human resources in the fields of science and technology. In order to increase the awareness of STEM-related secondary school teachers and vitalize the integrated STEM education, it is necessary to develop and spread a variety of programs, effective teaching and learning materials, and teachers' training programs.

A Design of Efficient Object Management Repository Using Integration Management Model (통합관리 모델을 이용한 효율적인 객체 관리 저장소 설계)

  • Seon, Su-Gyun;Song, Yeong-Jae
    • The KIPS Transactions:PartD
    • /
    • v.8D no.2
    • /
    • pp.166-174
    • /
    • 2001
  • Lately computing environment is changing into integrating open system. This paper proposes Integrated Management Model to improve productivity about new software development. The model is divided by Management Model to deal with the rapidly changing environment effectively into three layers: the first layer classifies and displays information to users, the users, the second layer controls function, the integration and management layer, and the last layer manages data, the objects management storage layer. So it designs of Efficient Object Management Repository Using Integration Management Model. This might support afterward prototyping in maximizing the reuse of software, which is advantage to the integration of the system, and in promoting its productivity.

  • PDF

수학영재교육에서 스프레드 쉬트의 활용

  • Arganbright Deane
    • Proceedings of the Korea Society of Mathematical Education Conference
    • /
    • 2006.04a
    • /
    • pp.25-37
    • /
    • 2006
  • 영재를 위한 수학교육은 우리의 당면과제 중 하나이다. 능력 있는 학생들의 학습이 속진에 한정되는 것 보다는 심화자료 및 수학적 소프트웨어와 함께 하는 것이 더 의미 있을 것으로 기대된다. 본 연구는 스프레트쉬트를 사용한 수학적 아이디어의 탐구에 관한 것이다. 다음에 대해 논의하기로 하겠다. i) 스프레드쉬트는 비전통적이면서도 이용이 용이하며, 수학적 통찰을 위한 매개물이다. ii) 풍부하고, 흥미릅고, 가치있는 수학적 주제에 대해 스프레드쉬트를 이용할 수 있다. iii) 스프레드쉬트를 사용하여 학생들이 수학적 아이디어에 대한 흥미를 고취시킬 수 있다. iv) 스프레드쉬트는 학생들에게 그들의 창의적인 시각화 기술을 공개할 기회를 줌으로써 수학에 대한 폭넓은 도식적 이해를 제공한다. v) animation을 포함한 스프레드쉬트 도식들의 적절한 사용은 유익하면서도 흥미롭다. vi) 학생들은 일상생활에 나타나는 수학의 흥미로움을 발견할 것이다. vii) 교사는 지금의 지도방식에 스프레드쉬트를 통합할 수 있다. 특히 스프레드쉬트는 다음과 같은 면모도 가지고 있다. i) 창의적인 수학적 스프레드쉬트 모델들의 실제 과정들이 그 자체로써 수학적 개념발달에 이용될수 있다. ii) 스프레드쉬트 모델은 심화된 주제의 탐색을 위한 의미 있는 탐구과제를 제공한다. iii) 스프레드쉬트는 현장에서 사용되는 실제적 수학 도구이다. - 과학자나 공학도들의 사용도 증가되고 있다. 이것의 사용은 학생들이 현장에서 사용할 기술을 취득하게 할 수 있고, 같은 컴퓨터의 소프트웨어를 사용하는 가족의 대화 수단이 되기도 한다. 본 연구에서 우리는 스프레드쉬트의 4가지 실증적 예를 들어 보겠다. 또한 다른 영역에서 발전된 스프레드쉬트 모델의 몇 가지 도식적 산출물도 포함 할 것이다. 우리는 가장 대중적인 스프레드 쉬트인 Microsoft Excel 프로그램을 사용하였다. Excel의 수행과 Excel 연산의 설명을 담은 CD와 함께 다양한 사례들에 대한 논의는 (8)을 참고하기 바란다. 본고에서는 graphic animation 기술, 스크롤바의 사용을 간단하게 개괄하겠다. '동적형상들(movies)'를 만들 수 있는 간단한 매크로의 사용 등의 내용들은 각 자료를 사용할 수 있는 Excel 파일의 예와 함께 [1]과 [8]에 설명하였었다. 많은 인쇄물과 on-line 참고문헌, 매체자료들도 함께 제공하였다.

  • PDF

The Effect of the Artificial Intelligence Storytelling Education Program on the Learning Flow (인공지능 스토리텔링 교육 프로그램이 학습 몰입도에 미치는 영향)

  • JinKwan Kim;Kyujung Han
    • Journal of The Korean Association of Information Education
    • /
    • v.26 no.5
    • /
    • pp.353-360
    • /
    • 2022
  • The purpose of this study is to verify the effect of artificial intelligence storytelling education program designed to help learning artificial intelligence based on storytelling, the most important element of human intelligence, on learning flow. To this end, a 16-hour artificial intelligence education program was designed and developed, and applied over 8 weeks to 19 gifted students in 5th and 6th grades of elementary school. Artificial intelligence storytelling education program was developed in the form of teaching and learning course plans for each class and storybooks. Artificial intelligence storytelling education program application results showed significant improvements in average scores in all 9 sub-factors of learning flow, including combination of challenges and abilities, integration of behavior and consciousness, clear goal, concrete feedback, focus on task, sense of control, loss of self-consciousness, Distortion of the sense of time, and self-purpose experience. In other words, it was confirmed that artificial intelligence storytelling education program was effective in improving learning flow.

Analysis of the Cognitive Level of Meta-modeling Knowledge Components of Science Gifted Students Through Modeling Practice (모델링 실천을 통한 과학 영재학생들의 메타모델링 지식 구성요소별 인식수준 분석)

  • Kihyang, Kim;Seoung-Hey, Paik
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.1
    • /
    • pp.42-53
    • /
    • 2023
  • The purpose of this study is to obtain basic data for constructing a modeling practice program integrated with meta-modeling knowledge by analyzing the cognition level for each meta-modeling knowledge components through modeling practice in the context of the chemistry discipline content. A chemistry teacher conducted inquiry-based modeling practice including anomalous phenomena for 16 students in the second year of a science gifted school, and in order to analyze the cognition level for each of the three meta-modeling knowledge components such as model variability, model multiplicity, and modeling process, the inquiry notes recorded by the students and observation note recorded by the researcher were used for analysis. The recognition level was classified from 0 to 3 levels. As a result of the analysis, it was found that the cognition level of the modeling process was the highest and the cognition level of the multiplicity of the model was the lowest. The cause of the low recognitive level of model variability is closely related to students' perception of conceptual models as objective facts. The cause of the low cognitive level of model multiplicity has to do with the belief that there can only be one correct model for a given phenomenon. Students elaborated conceptual models using symbolic models such as chemical symbols, but lacked recognition of the importance of data interpretation affecting the entire modeling process. It is necessary to introduce preliminary activities that can explicitly guide the nature of the model, and guide the importance of data interpretation through specific examples. Training to consider and verify the acceptability of the proposed model from a different point of view than mine should be done through a modeling practice program.

Qualitative Analysis of IT fused Mentorship Project Performance with Gifted Secondary Students in Information Science Class (정보 영재반 중학생들의 IT 융합 사사 프로젝트 수행에 관한 질적 분석)

  • Jun, Youngcook
    • The Journal of Korean Association of Computer Education
    • /
    • v.19 no.4
    • /
    • pp.45-58
    • /
    • 2016
  • This paper tried to analyze cases of one year team-based project of gifted students who spent two year programs in a math-IT integrated class as part of formative evaluation and extracted the factors associated with future enhancement for the program. The researcher as an advisory professor tried to guide the students as minimally as possible considering their levels of IT skills so that they could self-directedly perform the IT-fused project on a team basis. The data collection included documents, annual report, photos, video, artifacts and interview data with the students for the whole team project carried out between February and December, 2015. The overall pattern of the project activities has been stabilized in the middle of the course compared to the initial stages of brainstorming and design work even though the students revealed the differences of their programming skills and preferences toward the project theme. Their project outcomes were qualitatively analyzed according to the 9 steps of R&E model and has shown individual differences according to low, middle and high level. At the end, the analysis suggested several implications for further improvement of the mentorship program.

가족과 함께하는 창의성 경진대회 평가연구

  • 송규운;황동주;윤정진
    • Journal of Gifted/Talented Education
    • /
    • v.11 no.2
    • /
    • pp.127-150
    • /
    • 2001
  • The upcoming century is a knowledge based society which did not exist before which requires creative ability to solve problems. Therefore, it is necessary to Provide a creative program of problem solution in order to match this global trend The creativity of problem solution means the ability to solve a problem using previous ideas in an advanced way or develop new ideas. Creative education is especially important for infants. Because the young mind is where fresh ideas preside and can frame-work the early stage of life like a blank sheet of paper. The Infant-Early Child Creative Development Institute. as an adhesive institute at Yeungjin College, develops various programs that integrate methods which match current trend in this era and also start the Creative Promotion Test with 2,000 Families for the expansion of creative education from the baseline as an alternative method. The infants tested in the creative test will find ways of problem solution through animation beam projects for their given situation and also discuss the problems with their family members. Through these processes the infant and family members will complete the creative structures to solve the problems using limited materials given by the institute, and the final product will be evaluated as objective results. The final evaluation of the test will also be considered the teamwork of family cooperation and the attitudes of participants as well as the product of problem solution. The criterion of the evaluation is to be considered both a creative way of thinking and creative attitudes. Because the score counts were conducted manually it delayed the selection of awarded students who took the test. Also, we found that some parents have difficulty in accessing information to find the score through homepage from the computer. this Problem might be corrected in the future plan. Like Freud's saying, if human character and exploring attitudes during the early stage of a child, a person's creativity is composed their infant period as their basic foundation. Therefore, the family wh first environment the infant encounters will be treated as a prima when making basic structure. From this viewpoint, this creative test work as a festival of creativity fare with 2,000 families.

  • PDF

Development of Integrated Science and Art Teaching-Learning Programs for the Improvement of Creative Brain Activity of Scientifically Gifted Elementary School Student (초등과학영재의 창의적 두뇌 활성화를 위한 과학과 미술 통합 교수-학습 프로그램 개발)

  • Kwon, Young-Sik;Lee, Kil-Jae
    • Journal of Korean Elementary Science Education
    • /
    • v.32 no.4
    • /
    • pp.473-484
    • /
    • 2013
  • The purpose of this study was to develop science and art integrated program to improve the creativity of scientifically gifted elementary school students. This study was to develop science and art integrated program to enhance the creativity of these subjects. This program was consisted of 30 lessons covering 10 topics. It was developed of five stages including the observation stage reflecting the characteristics of the right hemisphere relevant to creativity, the interest and curiosity stage, the experiment design and performing stage, the internalization stage, and the stage of expressing arts. This program was applied to 20 senior gifted students in Y Elementary School in Gyeonggi province. Torrance Tests of Creative Thinking(TTCT) was used in order to investigate and measure the effectiveness of the program before and after its use in class. The results of this study are as follows: First, this program showed results of significant improvement of creativity of scientifically gifted elementary school students after its use in class(p<.05). Second, it was significantly effective in increasing their creativity, especially in the subdomains such as originality, abstractness of title, and territory of resistance on hasty conclusions after its use in class(p<.05). Third, it was significantly effective to increase the Creativity Index that represents creative potential(p<.01). In particular, emotional expression, internalized visualization, unique visualization, and richness of the imagery emerged. This study implies that the science and art integrated program was closely related to the right hemisphere of the features enabling the subjects to create new ideas, new things, and new reactions. In addition, this program is expected to contribute to activate the brain areas of creativity for gifted students in the science field.