• Title/Summary/Keyword: 통기

Search Result 530, Processing Time 0.027 seconds

Relationships between Electric Power Generation of PV System and Heat Transfer which has Free Air Ventilation Duct (배면 통기유로를 가지는 태양광 발전시스템의 발전효율과 열전달의 관계)

  • Kim, Myoung-Jun;Chea, Gyu-Hoon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.625-631
    • /
    • 2010
  • Recently, the fossil energy and its related environmental problems (increase in PPM of $CO_2$) have been increased. Therefore, the interests on new and renewable energy have been increased as the one of the future industrial leading items. Among the renewable energy, the PV (Photo-Volatic) systems has particular merit at the electricity can be directly acquired from the sun. Usually in PV systems, the ambient temperature and air velocity have strongly related on the effect of power generation of PV panel. So the purpose of this study is to clarify relationships between power generation of PV panel and outer environmental factors like temperature and air velocity. And these types of applications using natural energy are strongly affected by the climate conditions. Therefore the data of this study were re-arranged in terms of non-dimensional correlations.

A Study on the optimal length of air cavity for Solar heat removal with Air-Vent System (일사열 배제를 위한 통기벽체 적정 길이에 대한 검토)

  • Kim, Sang-Jin;Kum, Jong-Soo;Choi, Kwang-Hwan;Shin, Byong-Hwan;Chung, Yong-Hyun
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.2
    • /
    • pp.33-38
    • /
    • 2004
  • Outside wall systems we lost much energy from the dew of thermal bridge and unsuitable adiabatic construction. The air vent wall system can make reduce cooling loads from the outside wall in summer. The basic concept is connected with buoyant force by the difference of density. An external surface of a wall absorbs solar radiation, and transfers it to the air in the cavity. The warmed air gets buoyant force. So the warmed air is released through the top opening and cooler outside air replaces the space in the cavity. So because of the cavity and the openings, the cooling load reduction by natural ventilation is believed to be considerable. The purpose of this study is finding optimal length of air cavity by numerical analyses.

A Study of Solar heat removal Impact with Air-Vent Wall (통기벽체적용 건물에서의 일사열 제거효과 검토)

  • Kim, Sang-Jin;Kum, Jong-Soo;Choi, Kwang-Hwan;Shin, Byong-Hwan;Chung, Yong-Hyun
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.2
    • /
    • pp.25-31
    • /
    • 2004
  • Ventilation through air vent system in a building envelope is expected to be an effective measure to release solar radiation. An external surface of a wall absorbs solar radiation and transfers it to the air in the cavity. The warmed air gets buoyant force. So when openings are provided at the top and bottom of the cavity, the warmed air is released through the top opening and cooler outside air replaces the space in the cavity. This reduces the further heat transmission into the built environment. This natural ventilation effect seems to be steady and strong. So because of the cavity and the openings, the cooling load reduction by natural ventilation is believed to be considerable.

Performance Characteristics of Matured Compost Biofiltration of Ammonia Gas from the Agitated Composting (교반식 퇴비화 암모니아가스의 부숙퇴비를 이용한 탈취성능 특성)

  • 홍지형;박금주
    • Journal of Animal Environmental Science
    • /
    • v.8 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • Real sized open type biofilter system was manufactured to control the odor generated from the agitated composting system which composted swine manure and sawdust mixtures. The aim of this research was to develop a biofilter system using matured compost and to evaluate the performance of the biofilter system. Average ammonia reduction rate through the biofilter was 84% during about two month period of composting. The maximum ammonia concentration after filtering was 45ppm lower than allowable value of 50ppm. It was concluded that compost can be used as a biofilter materials.

  • PDF

Xylitol Production from D-Xylose by Candida mogii ATCC 18364 (Candida mogii ATCC 18364를 이용한 D-Xylose로부터 Xylitol 생산)

  • 백승철;권윤중
    • KSBB Journal
    • /
    • v.19 no.3
    • /
    • pp.226-230
    • /
    • 2004
  • Fermentation characteristics of D-xylose into xylitol by Candida mogii ATCC 18364, a potential xylitol producer from rice straw hemicellulose hydrolyzates, were investigated. The influences of the most important operational variables on xylitol production were examined. The best results in xylitol production were obtained in shake-flask fermentations when 3.0 g/L initial cell concentration of 12 hr-old cells grown in D-glucose containing medium were used as inoculum. The oxygen availability is a critical factor in xylose fermentation, therefore, xylose conversion into xylitol was investigated in a 2-L fermenter at different stirring rates. Maximum xylitol production was obtained with an aeration rate of 1 vvm at a stirring rate of 200 rpm.

Study on Characteristics of Vacuum Cooling for Agriculture Products (농산물의 진공예냉 특성에 관한 연구)

  • Lee, W.O.;Yun, H.S.;Chung, H.;Lee, H.D.;Cho, K.H.;Lee, K.H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2002.07a
    • /
    • pp.202-208
    • /
    • 2002
  • 진공냉각장치의 효율적인 설계를 위하여 파일럿 규모의 진공냉각장치에서 진공압력에 따른 작물별 냉각특성과 운전조작에 따른 냉각특성을 구명하는 요인실험을 실시한 결과 가. 배추와 같이 조밀하게 결구되어 있는 작물은 프레시 포인트로부터 습구온도와 품온에 따라 진공압을 조절함으로서 표면과 심부의 온도편차를 줄일 수 있고 버섯, 상추와 같이 개체가 작은 작물은 진공압력에 따른 온도편차가 거의 나타나지 않았다. 나. 포장방법에 따른 냉각 특성에서는 무개공 및 개공율 5% 골판지상자, PE 상자, 6mm 통기공이 있는 필름 포장에서의 냉각속도는 유사한 경향을 나타냈으나 0.8mm의 통기공을 가지고있는 필름 포장에서는 냉각속도가 현저히 낮게 나타나 필름 포장을 했을 경우 최소 개공율의 구명이 필요한 것으로 나타났다. 다. 예냉전 농산물 표면에 가수를 했을 경우 배추와 같은 결구성 농산물은 감모율 저하에는 효과적이었으나 무가수에 비해 냉각균일도와 냉각속도가 낮게 나타났으며 버섯에서는 감모율 저하 및 냉각속도 향상에 효과가 있는 것으로 나타났다.

  • PDF

Ground Penetrating Radar Profiling of an Unconfined Aquifer for Estimating the Groundwater Surface (지하투과레이다를 이용한 비피압대수층의 지하수면 추정)

  • Park, Inchan;Kim, Jitae;Cho, Woncheol
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1173-1177
    • /
    • 2004
  • 현재 다양한 분야에서 널리 사용되고 있는 지하투과레이더(Ground Penetrating Radar, GPR)를 이용하여 지하수면 및 함수량을 추정하였다. 비피압대수층 내에서의 얕은 포화대(saturated zone) 깊이을 산정하는 연구(livari and Doolittle, 1994, van Overmeeren, 1994)와 포화대 상부 습윤대(wetting fronts)의 거동를 조사한 연구(Vellidis et al, 1990) 등에 활용된 바 있는 GPR 기숙을 바탕으로 비피압대수층의 통기대와 포화대 내의 함수량 및 지하수면 추정을 위한 기초 실험을 수행하였다. 지하수면 및 함수량의 현장 적용성을 검증하기 위해서는 시간과 경제적인 면에서 비효율적인 점을 고려하여 사질토로 구성된 실험용 토조를 제작하여 건조시 획득된 GPR 자료, 지하수면의 변화에 따른 GPR 이미지를 비교하여 그 적용성을 검토하고 시${\cdot}$공간적 지하수면의 정확한 추정을 위해서 삼차원으로 비교${\cdot}$검토할 수 있도록 하였으며, GPR 자료의 정확성을 검증하기 위해서 토조 하부에 액주계(piezometer)를 설치하였다. 본 연구에서 적용된 GPR 실험은 획득된 이미지의 해석에 다소 어려움이 있지만 토양을 교란시키지 않고 비교적 간편하게 함수랑 및 지하수면의 위치를 파악하는데 매우 효과적이며, 추가적으로 GPR을 이용한 다양한 실험이 수행된다면 GPR 기술은 향후 기존 방법에서 쉽게 판단하기 어려운 시${\cdot}$공간적인 함수량 및 지하수의 분포 특성을 효율적으로 파악하는데 매우 큰 도움을 줄 수 있을 것이다.

  • PDF

A Study on the Air-Vent System of Complex Layer Applied Poly-Urethane Waterproofing Material and Air-Permeability Buffer Sheet (절연용 통기완충 시트와 폴리우레탄 도막 방수재를 복합 적층한 탈기 시스템에 관한 연구)

  • Oh, Sang-Keun;Park, Bong-Kyu;Ko, Jang-Ryeol;Park, Yoon-Chul;Kim, Su-Ryon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.1
    • /
    • pp.139-146
    • /
    • 2002
  • This study deals with the characterizing and the application like as insulation materials in the joint part in concrete surface layer and waterproofing sheet especially for roof slabs. Using steel materials and butil-rubber tape to band waterproofing sheet and concrete surface together before this waterproofing system will be applied. It can be expected to both the curability and the watertightness by coating poly-urethane 2 or 3 times with sheet surface. Therefore this waterproofing system can be possible to protect water without the damage when vapor is going out from concrete and without air pockets because of the difference temperature inside and out. This system particularly consists of air bents and elastic waterproofing sheet considering the physical damage while water can cause purely physical damage. This system is one of the most efficient ways of waterproofing system without air pocket.

Effect of Amino Acids and Dissolved Oxygen on Expression of Invertase in Recombinant Saccharomyces cerevisiae (재조합 Saccharomyces cerevisiae의 Invertase 발현에 미치는 아미노산과 용존산소의 영향)

  • 신해헌;조정섭;변유량;박혜영
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.3
    • /
    • pp.348-354
    • /
    • 1992
  • In order to improve the productivity of invertase by recombinant Saccharomyces cerevisiae containing SUC2 gene, the effect of amino acids and dissolved oxygen concentration on the gene expression was investigated. Optimal concentrations of leucine and histidine for cell growth and cloned gene expression were 0.03 gig and 0.04 gig, respectively, expressed as the ratio of amino acid/glucose. The lack or excess of leucine and histidine has inhibitory effect on cell growth and invertase expression. In batch culture, the less aeration was, the higher invertase activity was. In continuous culture at a dilution rate of 0.09 h 1 with controlled dissolved oxygen tension, invertase activity increased dramatically at DOT levels below 5% air saturation, and a maximum activity of 215.54 KUlg cell was obtained under unaerated condition.

  • PDF

An Experimental Study on Ventilation and Thermal Performance of Passive Ventilation Building Envelopes (패시브환기외피의 통기 및 열성능에 관한 실험적 연구)

  • Yoon, Seong-Hwan;Lee, Tae-Cheol;Kang, Jung-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.11
    • /
    • pp.711-717
    • /
    • 2011
  • In this study, 5 types of PVS(Passive ventilation system) units are made and experimented its ventilation performance, thermal performance according to open rate and hole diameter of perforated aluminum plane. Results are as follows. 1) The ventilation performance increases approximately 50~70% according by the open rate of PVS increasing. Also, the ventilation performance increases about 2%~12% according by the hole diameter of PVS increasing. 2) In winter temperature/pressure condition(in : $20^{\circ}C$, out : $-2^{\circ}C/{\Delta}P$ : 0.2~5.0Pa) the temperature of inflow air decreases according by the open rate of PVS increasing. Heat gain performance decreases 10.1%, 25.6% when open rate increases 3) In the same condition, Heat gain performance decreases 18.3%, 18.8% according by the hole diameter of PVS increasing.