• Title/Summary/Keyword: 통과

Search Result 8,897, Processing Time 0.042 seconds

A Comparative Study on the Chemical Methods for the Determination of Available Phosphorus in Korean Soils (한국토양(韓國土壤)의 유효인산량(有效燐酸量) 검정(檢定)을 위한 화학적(化學的) 방법(方法)에 대한 연구(硏究))

  • Lim, Sun-Uk;Chung, Jong-Bae;Sa, Tong-Min
    • Applied Biological Chemistry
    • /
    • v.29 no.1
    • /
    • pp.62-72
    • /
    • 1986
  • At present, the definition and chemical analysis method of available soil phosphorus for plants have not been standardized because of the complexity of crop and soil characteristics in Korea and many analysis methods have been suggested with different extraction conditions. Suitable analytical method of available soil P should be established by the trial of various methods based on crop nutrition and soil conditions. To establish the most suitable analysis method of available soiIP, a pot experiment with young maize was conducted over 44 different upland soils collected over the land of Korea. The amount of uptaken P by the plant was determined by ten different chemical methods for the available soil P. The results obtained were as follows: 1. Total phosphorus content in the sample soils ranged ranged $533{\sim}4917\;ppm$, and showed significant positive correlation with the content of organic matter. 2. The P content was relatively low in the acid sulfate soil and very high in the volcanic ash soil although both types of soil contained high level of orgic matter. 3. The amount of extractable P determined by ten different methods were varied more or less, and the ratios of the extractable P to the total soil P were in the range of $1{\sim}48%$. 4. The relative values to the amount of extractable soil P by different methods were in the order of $H_2O(5\;min.)\;1.0\;<\;H_2O(60min.)\;2.27\;<\;NH_4HCO_3\;5.57\;<\;NaHCO_3\;7.42\;<\;Double\;lactate\;9.71\;<\;Bray\;No.1\;12.53\;<\;Lancaster\;17.63\;<\;Nelson\;25.96\;<\;AcOH\;27.6\;<\;CAL-method\;50.27$ 5. The amount of extractable P determined by all of applied methods was very low in acid sulfate soil, volcanic ash soil and coarse textured soil. 6. Soil pH and total soil P generally showed significant positive correlation with the chemically extracted P, and soil organic matter was negatively correlated with the determined by Nelson-and CAL-method. Olsen method which showed significant correlation with exchangeable calcium seemed to be recommendable for calcareous soils. 7. Total amount of uptaken P by Young maize through continuos twice cropping was 4.05% of total soil P in average, and the uptake in the second cropping was twice as much as that of the first cropping. 8. Three determination methods, i.e. Soltanpour-, Double lactate and Bray No. 1-method seemed to be more suitable than Lancaster method which is widely practiced at present in Korea. However, further study should be carried out with other crops and soils to most adequate chemical method for determination of available soil P.

  • PDF

The Respiratory and Hemodynamic Effects of Prone Position According to the Level of PEEP in a Dog Acute Lung Injury Model (잡종견 급성폐손상 모델에서 Prone position 시행시 PEEP 수준에 따른 호흡 및 혈류역학적 효과)

  • Lim, Chae-Man;Chin, Jae-Yong;Koh, Youn-Suck;Shim, Tae-Sun;Lee, Sang-Do;Kim, Woo-Sung;Kim, Dong-Soon;Kim, Won-Dong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.1
    • /
    • pp.140-152
    • /
    • 1998
  • Background: Prone position improves oxygenation in patients with ARDS probably by reducing shunt Reduction of shunt in prone position is thought to be effected by lowering of the critical opening pressure (COP) of the dorsal lung because the pleural pressure becomes less positive in prone position compared to supine position. It can then be assumed that prone position would bring about greater improvement in oxygenation when PEEP applied in supine position is just beneath COP than when PEEP is above COP. Hemodynamically, prone position is expected to attenuate the lifting of cardiac fossa induced by PEEP. Based on these backgrounds, we investigated whether the effect of prone position on oxygenation differs in magnitude according to the level of PEEP applied in supine position, and whether impaired cardiac output in supine position by PEEP can be restored in prone position. Methods: In seven mongrel dogs, $PaO_2/F_1O_2$(P/F) was measured in supine position and at prone position 30 min. Cardiac output (CO), stroke volume (SV), pulse rate (PR), and pulmonary artery occlusion pressure (PAOP) were measured in supine position, at prone position 5 min, and at prone position 30 min. After ARDS was established with warmed saline lavage(P/F ratio $134{\pm}72$ mm Hg), inflection point was measured by constant flow method($6.6{\pm}1.4cm$ $H_2O$), and the above variables were measured in supine and prone positions under the application of Low PEEP($5.0{\pm}1.2cm$ $H_2O$), and Optimal PEEP($9.0{\pm}1.2cm$ $H_2O$)(2 cm $H_2O$ below and above the inflection point, respectively) consecutively. Results : P/F ratio in supine position was $195{\pm}112$ mm Hg at Low PEEP and $466{\pm}63$ mm Hg at Optimal PEEP(p=0.003). Net increase of P/F ratio at prone position 30 min, however, was far greater at Low PEEP($205{\pm}90$ mm Hg) than at Optimal PEEP($33{\pm}33$ mm Hg)(p=0.009). Compared to CO in supine position at Optimal PEEP($2.4{\pm}0.5$ L/min), CO in prone improved to $3.4{\pm}0.6$ L/min at prone position 5 min (p=0.0180) and $3.6{\pm}0.7$ L/min at prone position 30 min (p=0.0180). Improvement in CO was attributable to the increase in SV: $14{\pm}2$ ml in supine position, $20{\pm}2$ ml at prone position 5 min (p=0.0180), and $21{\pm}2$ ml at prone position 30 min (p=0.0180), but not to change in PR or PAOP. When the dogs were turned to supine position again, MAP ($92{\pm}23$ mm Hg, p=0.009), CO ($2.4{\pm}0.5$ L/min, p=0.0277) and SV ($14{\pm}1$ ml, p=0.0277) were all decreased compared to prone position 30 min. Conclusion: Prone position in a dog with saline-lavaged acute lung injury appeared to augment the effect of relatively low PEEP on oxygenation, and also attenuate the adverse hemodynamic effect of relatively high PEEP. These findings suggest that a PEEP lower than Optimal PEEP can be adopted in prone position to achieve the goal of alveolar recruitment in ARDS avoiding the hemodynamic complications of a higher PEEP at the same time.

  • PDF

National Survey of Sarcoidosis in Korea (유육종증 전국실태조사)

  • 대한결핵 및 호흡기학회 학술위원회
    • Tuberculosis and Respiratory Diseases
    • /
    • v.39 no.6
    • /
    • pp.453-473
    • /
    • 1992
  • Background: National survey was performed to estimate the incidence of sarcoidosis in Korea. The clinical data of confirmed cases were analysed for the practice of primary care physicians and pulmonary specialists. Methods: The period of study was from January 1991 to December 1992. Data were retrospectively collected by correspondence with physicians in departments of internal medicine, dermatology, ophthalmology and neurology of the hospitals having more than 100 beds using returning postcards. In confirmed and suspicious cases of sardoidosis, case record chart for clinical and laboratory findings were obtained in detail. Results: 1) Postcards were sent to 523 departments in 213 hospitals. Internal medicine composed 41%, dermatology 20%, ophthalmology 20% and neurology 19%. 2) Postcards were returned from 241 departments (replying rates was 48%). 3) There were 113 confirmed cases from 50 departments and 10 cases. The cases were composed from internal medicine (81%), dermatology (13%), ophthalmology (3%) and neurology (3%). 78 confirmed cases were analysed, which were composed from department of internal medicine (92%), dermatology (5%), and neurology (3%). 4) The time span for analysed cases was 1980 to 1992. one case was analysed in 1980 and the number gradually increased to 18 cases in 1991. 5) The majority of patients (84.4%) were in the age group of 20 to 49 years. 6) The ratio of male to female was 1 : 1.5. 7) The most common chief complains were respiratory symptoms, dermatologic symptoms, generalized discomforts, visual changes, arthralgia, abdominal pains, and swallowing difficulties in order. 16% of the patients were asymptomatic. 8) Mean duration between symptom onset and diagnosis was 2 months. 9) The most common symptoms were respiratory, general, dermatologic, ophthalmologic, neurologic and cardiac origin in order. 10) Hemoglobin, hematocrits and platelet were in normal range. 58% of the patients had lymphopenia measuring less than 30% of white cell count. The ratio of CD4 to CD8 lymphocytes was $1.73{\pm}1.16$ with range of 0.43 to 4.62. ESR was elevated in 43% of the cases. 11) Blood chemistry was normal in most cases. Serum angiotensin converting enzyme (S-ACE) was $66.8{\pm}58.6\;U/L$ with the range of 8.79 to 265 U /L. Proteinuria of more than 150 mg was found in 42. 9% of the patients. 12) Serum IgG was elevated in 43.5%, IgA in 45.5%, IgM in 59.1% and IgE in 46.7%. The levels of complement C3 and C4 were in the normal range. Anti-nuclear antibody was detected in 11% of the cases. Kweim test was performed in 3 cases, and in all cases the result was positive. 13) FVC was decreased in 17.3%, FEV1 in 11.5%, FEV1/FVC in 10%, TLC in 15.2%, and DLco in 64.7%. 14) PaO2 was decreased below 90 mmHg in 48.6% and PaCO2 was increased above 45 mmHg in 5.7%. 15) The percentage of macrophages in BAL fluid was $51.4{\pm}19.2%$, lymphocytes $44.4{\pm}21.1%$, and the ratio of CD4 to CD8 lymphocytes was $3.41{\pm}2.07$. 16) There was no difference in laboratory findings between male and female. 17) Hilar enlargement on chest PA was present in 87.9% (bilaterally in 78.8% and unilaterally in 9.1%). 18) According to Siltzbach's classification, stage 0 was 5%, stage 158.3%, stage 228.3%, and stage 38.3%. 19) Hilart enlargement on chest CT was present in 92.6% (bilaterally 76.4% and unilaterally in 16.2%). 20) HRCT was done in 16 cases. The most common findings were nodules, interlobular thickening, focal patchy infiltrations in order. Two cases was normal finding. 21) Other radiologic examinations showed bone change in one case and splenomegaly in two cases. 22) Gallium scan was done in 12 cases. Radioactivity was increased in hilar and mediastinal lymph nodes in 8 cases and in parenchyme in 2 cases. 23) The pathologic diagnosis was commonly performed by transbrochial lung biopsy (TBLB, 47.3%), skin and mediastinal lymph nodes biopsy (34.5%), peripheral lymph nodes biopsy (23.6%), open lung biopsy (18.2%) and bronchial biopsy in order. 24) The most common findings in pathology were non·caseating granuloma (100%), multi-nucleated giant cell (47.3%), hyalinized acellular scar (34.5%), reticulin fibrin network (20%), inclusion body (10.9%), necrosis (9.1%), and lymphangitic distribution of granuloma (1.8%) in order. Conclusion: Clinical, laboratory, radiologic and pathologic findings were summarized. This collected data will assist in finding a test for detection and staging of sarcoidosis in Korea in near future.

  • PDF

Physiological and Ecological Studies on the Low Temperature Damages of Rice (Oryza sativia L.) (수도의 저온장해에 관한 생리 생태학적 연구)

  • 오윤진
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.26 no.1
    • /
    • pp.1-31
    • /
    • 1981
  • Experiments were conducted to investigate rice varietal response to low water and air temperatures at different growth stages from 1975 to 1980 in a phytotron in Suweon and in a cold water nursery in Chooncheon. Germination ability, seedling growth, sterility of laspikelets, panicle exertion, discoloration of leaves, and delay of heading of recently developed indica/japonica cross(I/J), japonica, and indica varieties at low air temperature or cold water were compared to those at normal temperature or natural conditions. The results are summarized as follows: 1. Practically acceptable germination rate of 70% was obtained in 10 days after initiation of germination test at 15\circ_C for japonica varieties, but 15 days for IxJ varieties. Varietal differences in germination ability at suboptimal temperature was greatest at 16\circ_C for 6 days. 2. Cold injury of rice seedlings was most severe at the 3.0-and 3.5-leaf stage and it was reduced as growth stage advanced. A significant positive correlation was observed between cold injury at 3-leaf stage and 6-leaf stage. 3. At day/night temperatures of 15/10\circ_C seedlings of both japonica and I/J varieties were dead in 42 days. At 20/15\circ_C japonica varieties produced tillers actively, but tillering of I/J varieties was retarded a little. At 25/15\circ_C, both japonica and I/J varieties produced tillers most actively. Increase in plant height was proportional to the increase in all varieties. 4. In I/J varieties the number of differentiated panicle rachis branches and spikelets was reduced at a day-night temperature of 20-15\circ_C compared to 25-20 or 30-25\circ_C, but not in japonica varieties although panicle exertion was retarded at 20-15\circ_C. The number of spikelets was not correlated with the number of primary rachis branches, but positively correlated with that of secondary rachis branches. 5. Heading of rice varieties treated with 15\circ_C air temperature at meiotic stage was delayed compared to that at tillering stage by 1-3 days and heading was delayed as duration of low temperature treatment increased. 6. At cold water treatment of 17\circ_C from tillering to heading stage, heading of japonica, I/J, and cold tolerant indica varieties was delayed 2-6, 3-9, and 4-5 days, respectively, Growth stage sensitive to delay of heading delay at water treatment were tillering stage, meiotic stage, and booting tage in that order, delay of heading was greater in indica corssed japonica(Suweon 264), japonica(Suweon 235), and cold tolerant indica(Lengkwang) varieties in that order. Delay of heading due to cold water treatment was positively correlated with culm length reduction and spikelet sterility. 7. Elongation of culms and exertion of panicles of rice varieties treated with low air temperature 17\circ_C. Culm length reduction rate of tall varieties was lower than that of short statured varieties at low temperature. Panicle exertion was most severaly retarded with low temperature treatment at heading stage. Generally, retardation of panicle exertion of 1/1 varieties was more severe than that of japonica varieties at low temperature. There was a positive correlation between panicle exertion and culm length at low temperature. 8. The number of panicles was increased with cold water treatment at tillering stage, but reduced at meiotic stage. As time of cold water treatment was conducted at earlier growth stage, culm length was shorter and panicle exertion poorer. 9. Sterility of all rice varieties was negligible at 17\circ_C for three days but 30.3-85.2% of strility was observed for nine-day treatment at 17\circ_C. Among the tested varieties, sterility of Suweon 264 and Milyang 42 was highest and that of Suweon 290 and Suweon 287 was lowest. The most sensitive growth stage to low temperature induced sterility was from 15 to 5 days before heading. There was positive correlation between sterility of rice plants treated with low temperature at meiotic and heading stage. 10. Percentage of spikelet sterility was greatest at cold water treatment at meiotic stage (auricle distance -15~-10cm) and it was higher in 1/1 (Suweon 264, Joseng tongil), japonica (Nongbaek, Towada), and cold tolerance indica(Lengkwang) varieties in the order. Level of cold water and position of young-ear affected on the sterility of varieties at meiotic stage; percentage of spikelet sterility of variety, Lengkwang, of which young-ear was located above the cold water level was high, but that of short statured variety, Suweon 264, of which young-ear was located in the cold water was lower. 11. Percentage of ripened grains was not reducted at 15\circ_C air temperature for three days at full heading stage in all varieties. However, at six-day low temperature treatment Suweon 287, Suweon 264 showed percentage of ripended grains lower than 60%, but at nine-day low temperature treatment all varieties showed percentage of ripened grains lower than 60%. Low temperature treatment of 17\circ_C from 10 days after heading for 20 days did not affect on the ripening of all varieties. 12. Uptake of nitrogen, phosphorous, potassium, calcium, and magnesium in whole plants was higher at average air temperature of 25\circ_C, but concentration of the elements was lower compared to those at 19\circ_C. However, both total uptake and concentration of manganese were higher at 19\circ_C compared to 25\circ_C. 13. Higher application of nitrogen, phosphorus, silicate, and compost increased yield of rice due to increased number of panicles and spike let fertility in cold water irrigated paddy.

  • PDF

Studies on the Drying Mechanism of Stratified Soil-Comparison between Bare Surface and Grass plot- (성층토양의 건조기구에 관한 연구)

  • 김철기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.15 no.1
    • /
    • pp.2913-2924
    • /
    • 1973
  • This study was to investigate the drying mechanism of stratified soil by investigating 'effects of the upper soil on moisture loss of the lower soil and vice versa' and at the same time by examining how the drying progressed in the stratified soils with bare surface and with vegetated surface respectively. There were six plots of the stratified soils with bare surface($A_1- A_6$ plot) and the same other six plots($B_1- B_5$ plot), with vegetated surface(white clover). These six plots were made by permutating two kinds of soils from three kinds of soils; clay loam(CL). Sandy loam(SL). Sand(s). Each layer was leveled by saturating sufficient water. Depth of each plot was 40cm by making each layer 20cm deep and its area. $90{\times}90(cm^2)$. The cell was put at the point of the central and mid-depth of the each layer in the each plot in order to measure the soil moisture by using OHMMETER. soil moisture tester, and movement of soil water from out sides was cut off by putting the vinyl on the four sides. The results obtained were as follow; 1. Drying progressed from the surface layer to the lower layer regardless of plots. There was a tendency thet drying of the upper soil was faster than that of the lower soil and drying of the plot with vegetated surface was also faster than that of the plot with bare surface. 2. Soil moisture was recovered at approximately the field capacity or moisture equivalent by infiltration in the course of drying, when there was a rainfall. 3. Effects of soil texture of the lower soil on dryness of the upper soil in the stratified soil were explained as follows; a) When the lower soil was S and the upper, CL or SL, dryness of the upper soils overlying the lower soil of S was much faster than that overlying the lower soil of SL or CL, because sandy soil, having the small field capacity value and playing a part of the layer cutting off to some extent capillary water supply. Drying of SL was remarkably faster than that of CL in the upper soil. b) When the lower soil was SL and the upper S or CL, drying of the upper soil was the slowest because of the lower SL, having a comparatively large field capacity value. Drying of CL tended to be faster than that of S in the upper soil. c) When the lower soil was CL and the upper S or SL, drying of the upper soil was relatively fast because of the lower CL, having the largest field capacity value but the slowest capillary conductivity. Drying of SL tended to be faster than that of S in the upper soil. 4. According to a change in soil moisture content of the upper soil and the lower soil during a day there was a tendency that soil moisture contents of CL and SL in the upper soil were decreased to its minimum value but that of S increased to its maximum value, during 3 hours between 12.00 and 15.00. There was another tendency that soil moisture contents of CL, SL and S in the lower soil were all slightly decreased by temperature rising and those in a cloudy day were smaller than those in a clear day. 5. The ratio of the accumulated soil moisture consumption to the accumulated guage evaporation in the plot with vegetated surface was generally larger than that in the plot with bare surface. The ratio tended to decrease in the course of time, and also there was a tendency that it mainly depended on the texture of the upper soil at the first period and the texture of the lower soil at the last period. 6. A change in the ratio of the accumulated soil moisture consumption was larger in the lower soil of SL than in the lower soil of S. when the upper soil was CL and the lower, SL and S. The ratio showed the biggest figure among any other plots, and the ratio in the lower soil plot of CL indicated sligtly bigger than that in the lower soil plot of S, when the upper soil was SL and the lower, CL and S. The ratio showed less figure than that of two cases above mentioned, when the upper soil was S and the lower CL and SL and that in the lower soil plot of CL indicated a less ratio than that in the lower soil plot of SL. As a result of this experiments, the various soil layers wero arranged in the following order with regard to the ratio of the accumulated soil moisture consumption: SL/CL>SL/S>CL/SL>CL/S$\fallingdotseq$S/SL>S/CL.

  • PDF

Study on the Genetic Variations of the Economic Traits by Backcrossing in Commercial Chickens (실용계군에 있어서 누진퇴교배에 의한 주요경제형질의 유전적 변이에 관한 연구)

  • 이종극;오봉국
    • Korean Journal of Poultry Science
    • /
    • v.16 no.2
    • /
    • pp.61-71
    • /
    • 1989
  • The purposes of this study were to investigate the genetic variations by backcrossing in commercial chickens. Backcrossing was carried out successively back to parent stock (P.S). Heritabilities and genetic correlation coefficients were estimated to verify the genetic variations. The data obtained from a breeding programme with commercial chickens (I strain) were collected from 1955 to 1987 at Poultry Breeding Farm, Seoul National University. Data came from a total of 1230 female offspring. The results obtained are summarized as follows: 1. The general performance ($Mean\pmStandard deviation$) of each trait was $663.94\pm87.11$g for 8 weeks body weight, $1579.1\pm155.43$g for 20 weeks body weight, $2124.1\pm215.3$g for 40 weeks body weight, $2269.1\pm242.94$g for 60 weeks body weight, $168.43\pm12.94$ day for a9e at sexual maturity (SM), $214.52\pm29.82$ eggs , for total egg number to 60 weeks of age (TEN), $61.45\pm3.48$ g for average weight (AEW), $13180.7\pm1823.22$ g for total egg mass to 60 weeks of age(TEM). All traits, except 10 weeks body weight and AEW, were significant for the degrees of backcross (p<0.01). 2. The pooled estimates of heritabilities derived from the sire, dam and combined variance components were 0.47~0.52 for age at sexual maturity (SM), 0.07~0.37 for total egg number (TEN), 0.40~0.54 for average egg weight (AEW), 0.18~0.27 for total egg mass (TEM). High heritability estimates were found for SM and AEW. TEN and TEM were estimated to be a lowly heritable traits. Heritability estimates from dam components were higher than those from sire components. These differences might be due to non-additive genetic effect and maternal effect. 3. The estimates of heritabilities and standard errors derived from combined variance components for different degrees of backcross were $0.47\pm0.11$ (BCO), $0.42\pm0.16$ (BC1), $0.51\pm0.29$ (BC2) for TEN, $0.59\pm0.20$ (BCO), $0.43\pm0.17$ (BC1), $0.35\pm0.18$ (BC2) for AEW, $0.28\pm0.12$(BC0), $0.20\pm0.11$(BC1), $0.18\pm0.14$ (BC2) for TEM. Heritability estimates for AEW and TEM were decreased by backcrossing while those for SM and TEN remained constant. Since backcrossing contributes to increased homozygosity, the genetic variation of the traits (AEW and TEM) decreased . 4. The pooled estimates of genetic correlation coefficients were -0.55 between SM and TEN, 0.20 between SM and AEW, -0.29 between TEN and AEW, 0.82 between TEM and TEN, 0.31 between TEM and AEW, -0.42 between TEM and SM. The genetic correlation between TEM and TEN was higher than that between TEM and AEW, and it was suggested that egg mass was strongly affected by egg number. Also, age at sexual maturity(SM) contributes to egg mass(TEM). 5. When backcrossing was carried out successively, the genetic correlation between TEM and TEN increased (BC0:0.79, BC1:0.82, BC2:0.91) but those between TEM and SM decreased (BC0:-0.54, BC1:-0.36, BC2:-0.09) with successive backcrosses.

  • PDF

Studies on Fire-Retardant-Treatment and Press Drying of Plywood (합판(合板)의 내화처리(耐火處理)와 열판건조(熱板乾燥)에 관(關)한 연구(硏究))

  • Lee, Phil-Woo;Kim, Jong-Man
    • Journal of the Korean Wood Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.5-37
    • /
    • 1982
  • Plywood used for construction as a decorative inner material is inflammable to bring large fire accidents and burn out human life and their properties. To diminish the fire disaster, fire retardant plywood has been required indeed. In the methods of manufacturing the fire retardant plywood the soaking method is occasionally used. However after soaking plywood into fire retardant chemical solutions, redrying of soaked plywood is the most important. In this study, 3.5mm thin and 5.0mm thick plywoods were selected for fire retardant treatment. Treating solutions were prepared for 20% dilute solutions of ammonium sulfate, monoammonium phosphate, diammonium phosphate, borax-boric acid and minalith, and water solution. 1-, 3-, 6-, and 9 hour-soaking treatments were applied and after treatments hot plate drying was applied to those treated plywoods at $90^{\circ}C$, $120^{\circ}C$ and $150^{\circ}C$, of press temperature. Drying rates, drying curves, water absorption rates of fire retardant chemicals, weight per volume and fire retardant degree of plywood were investigated. The results may be summarized as follows: 1. The plywoods treated with ammonium sulfate, monoammonium phosphate and diammonium phosphate and diammonium phosphate showed increase of chemical absorption rate with proportion to increase of treating time, but not in case of the plywood treated with borax-boric acid and minalith. 2. In the treatment of definite time, the absorption rate per unit of volume of plywood showed higher in thin plywood (thickness of 3.5mm) than in thick plywood (thickness of 5.0mm). In both thin and thick plywoods, the highest absorption rate was observed in 9 hour-treatment of ammonium sulfate. The value was 1.353kg/$(30cm)^3$ in thin plywood and 1.356kg/$(30cm)^3$ in thick plywood. 3. The volume per weight of plywood after chemical treatment increased remarkably and. after hot plate drying, the values were to a little extent higher than before chemical treatment. 4. The swelling rates of thickness in chemical-treated plywoods increased similarly with that of water-treated plywood in 1- and 3 hour-treatment of both thin and thick plywoods. But in 6- and 9 hour-treatment, the greater increased value showed in water-treated ply wood than any other chemical, especially in thick plywood. 5. The shrinkage rates after hot plate drying showed the same tendency as the swelling rate, and the rate showed the increasing tendency with proportion to increase of treating time in thick plywood of both chemical and water treatments. 6. Among drying curves, the curves of water-treated plywood placed more highly than chemical-treated plywood without-relation to thickness in 6- and 9 hour-treatment except in 1- and 3 hour-treatment. 7. The drying rate related to thickness of treated plywood, was twice above in thin plywood compared with thick plywood. 8. The drying rate remarkably increased with proportion to increase of the plate temperature and, the values were respectively 1.226%/min., 6.540%/min., 25.752%/min. in hot plate temperature of $90^{\circ}C$, $120^{\circ}C$, $150^{\circ}C$ in thin plywood and 0.550%/min., 2.490%/min, 8.187%/min, in hot plate temperature of $90^{\circ}C$, $120^{\circ}C$, $150^{\circ}C$ in thick plywood. 9. In the treatment at $120^{\circ}C$ of hot plate temperature, the drying rates of chemical-treated plywood showed the highest value in monoammonium phosphate of thin plywood and in diammonium phosphate of thick plywood. But the drying rate of water-treated plywood was highest in 6- and 9 hour-treatment. 10. The fire retardant degree of chemical-treated plywood was higher than that of the untreated plywood as shown in loss of weight, burning time, flame-exhausted time and carbonized area. 11. The fire-retardant effect among fire retardant chemicals were the greatest in diammonium phosphate, the next were in monoammonium phosphate and ammonium sulfate, and the weakest were in borax-boric and minalith.

  • PDF

Radioimmunoassay Reagent Survey and Evaluation (검사별 radioimmunoassay시약 조사 및 비교실험)

  • Kim, Ji-Na;An, Jae-seok;Jeon, Young-woo;Yoon, Sang-hyuk;Kim, Yoon-cheol
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.25 no.1
    • /
    • pp.34-40
    • /
    • 2021
  • Purpose If a new test is introduced or reagents are changed in the laboratory of a medical institution, the characteristics of the test should be analyzed according to the procedure and the assessment of reagents should be made. However, several necessary conditions must be met to perform all required comparative evaluations, first enough samples should be prepared for each test, and secondly, various reagents applicable to the comparative evaluations must be supplied. Even if enough comparative evaluations have been done, there is a limit to the fact that the data variation for the new reagent represents the overall patient data variation, The fact puts a burden on the laboratory to the change the reagent. Due to these various difficulties, reagent changes in the laboratory are limited. In order to introduce a competitive bid, the institute conducted a full investigation of Radioimmunoassay(RIA) reagents for each test and established the range of reagents available in the laboratory through comparative evaluations. We wanted to share this process. Materials and Methods There are 20 items of tests conducted in our laboratory except for consignment tests. For each test, RIA reagents that can be used were fully investigated with the reference to external quality control report. and the manuals for each reagent were obtained. Each reagent was checked for the manual to check the test method, Incubation time, sample volume needed for the test. After that, the primary selection was made according to whether it was available in this laboratory. The primary selected reagents were supplied with 2kits based on 100tests, and the data correlation test, sensitivity measurement, recovery rate measurement, and dilution test were conducted. The secondary selection was performed according to the results of the comparative evaluation. The reagents that passed the primary and secondary selections were submitted to the competitive bidding list. In the case of reagent is designated as a singular, we submitted a explanatory statement with the data obtained during the primary and secondary selection processes. Results Excluded from the primary selection was the case where TAT was expected to be delayed at the moment, and it was impossible to apply to our equipment due to the large volume of reagents used during the test. In the primary selection, there were five items which only one reagent was available.(squamous cell carcinoma Ag(SCC Ag), β-human chorionic gonadotropin(β-HCG), vitamin B12, folate, free testosterone), two reagents were available(CA19-9, CA125, CA72-4, ferritin, thyroglobulin antibody(TG Ab), microsomal antibody(Mic Ab), thyroid stimulating hormone-receptor-antibody(TSH-R-Ab), calcitonin), three reagents were available (triiodothyronine(T3), Tree T3, Free T4, TSH, intact parathyroid hormone(intact PTH)) and four reagents were available are carcinoembryonic antigen(CEA), TG. In the secondary selection, there were eight items which only one reagent was available.(ferritin, TG, CA19-9, SCC, β-HCG, vitaminB12, folate, free testosterone), two reagents were available(TG Ab, Mic Ab, TSH-R-Ab, CA125, CA72-4, intact PTH, calcitonin), three reagents were available(T3, Tree T3, Free T4, TSH, CEA). Reasons excluded from the secondary selection were the lack of reagent supply for comparative evaluations, the problems with data reproducibility, and the inability to accept data variations. The most problematic part of comparative evaluations was sample collection. It didn't matter if the number of samples requested was large and the capacity needed for the test was small. It was difficult to collect various concentration samples in the case of a small number of tests(100 cases per month or less), and it was difficult to conduct a recovery rate test in the case of a relatively large volume of samples required for a single test(more than 100 uL). In addition, the lack of dilution solution or standard zero material for sensitivity measurement or dilution tests was one of the problems. Conclusion Comparative evaluation for changing test reagents require appropriate preparation time to collect diverse and sufficient samples. In addition, setting the total sample volume and reagent volume range required for comparative evaluations, depending on the sample volume and reagent volume required for one test, will reduce the burden of sample collection and planning for each comparative evaluation.

The Study on Foundation Remains(Jeoksim) According to Types of Buildings of Gyeongbok Palace (경복궁 건물 유형에 따른 적심 연구)

  • Choi, In Hwa
    • Korean Journal of Heritage: History & Science
    • /
    • v.42 no.3
    • /
    • pp.154-175
    • /
    • 2009
  • At the present state, studies on Gyeongbok palace are being done with history of architecture, records, and art. However, these studies have limits that they can only depend on existing buildings and record, which make it hard to research whole aspect of palaces. The foundation remains(Jeoksim) of Gyeongbok palace in the ground gives important clues that can fill the gaps of these studies. Thus I analysed jeoksim of Gyeongbok palace, assorted them by type, scale, material, and construction method. I examined jeoksim used by various types of building, and looked at changes by periods. Jeoksims are classified in 21 types. The foundation(jeoksim) varies according to types of buildings, building types and material of jeoksim also varies along the periods, and the fact proves certain peroid of time has its own jeoksim style in fashion. Jeoksims of Gyeongbok palace are divided into round-shape(I), rounded square-shape(II), rectangular-shape(III), square-shape(IV), and whole foundation of building(V) by the plane shape. They can be divided again into 21 types by construction techniques and materials used. During early Joseon(I), only three types of jeoksim; round-shape riprap jeoksim(1-1), II-1(rounded square-shape), II-2a(rounded square-shape riprap+roofingingtile brick), had been built, but as 19th century begun, all 21 types of jeoksim had built. In 19th century during Emperor Gojong, different types of jeoksim by periods were built, and especially different materials were used. During Gojong year 2(1865)~year 5(1868), in which Gyeongbok palace were rebuilt, 7 out of 10 types of jeoksim used piece of roofinging tile and brick mixture, in contrast, during Gojong year 10(1873)~13(1876), or 25(1888), 3 out of 5 types of jeoksim used sandy soil with mixture of plaster. Meanwhile palace buildings have different names by the class of owner and use such as Jeon, Dang, Hap, Gak, Jae, Heon, Nu, and Jeong, which were classified by types and buildings were built according to each level. With an analysis of jeoksim by its building types, I ascertained that jeoksim were built differently in accordance to building types(Jeon, Dang, Hap, Gak, Jae, Heon, Nu, and Jeong). By the limitation of present document, only some types of buildings such as Jeon, Dang, Gak, Bang were confirmed, as for Jeon and Gak, square-shape(IV) built with rectangular parallelepiped stone, and for Dang and Bang, rounded square-shape(IV) built with roofinginginging tile and riprap were commonly used. From the fact that other jeoksim with uncertain building names, were mostly built in early Joseon, we learn that round-shape riprap jeoksim(1-1) were commonly built. Therefore, the class of building was higher if the owner was in higher class, jeoksim is also considered to be built with the strongest and best material. And for Dang and Bang, rounded square-shape jeoksim were used, Dang has lots of II-2a (riprap + piece of roofing tile and brick rounded square-shape) type which mainly used riprap and piece of roofing tile and brick, but Bang has lots of II-2b (piece of roofing tile and brick+(riprap+piece of roofing tile and brick rounded square-shape), which paved piece of roofing tile and brick by 15~20cm above. These jeoksim by building types were confirmed to have changed its construction type by period. As for Jeon and Gak, they were built with round-shape riprap jeoksim(1-1) in early Joseon(14~15c), but in late Joseon(19c), various types of Jeoksim were built, especially square-shape(IV) were commonly built. For Dang, only changes in later Joseon were confirmed, jeoksim built in Gojong year 4(1867) mostly used mixture of riprap and piece of roofing tile and brick. In Gojong year 13(1876) or year 25(1888), unique type of plaster with sand and coal and soil layered jeoksim were built that are not found in any other building types. Through this study, I learned that various construction types of jeoksim and material were developed in later Joseon compare to early Joseon. This states that construction technique of building foundation of palace has upgraded. Above all, I learned jeoksim types are all different for various kinds of buildings. This tells us that when they constructed foundation of building, they used pre-calculated construction technique.

Studies on the Consumptine Use of Irrigated Water in Paddy Fields During the Growing of Rice Plants(III) (벼생유기간중의 논에서의 분석소비에 관한 연구(II))

  • 민병섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.11 no.4
    • /
    • pp.1775-1782
    • /
    • 1969
  • The results of the study on the consumptine use of irrigated water in paddy fields during the growing season of rice plants are summarized as follows. 1. Transpiration and evaporation from water surface. 1) Amount of transpiration of rice plant increases gradually after transplantation and suddenly increases in the head swelling period and reaches the peak between the end of the head swelling poriod and early period of heading and flowering. (the sixth period for early maturing variety, the seventh period for medium or late maturing varieties), then it decreases gradually after that, for early, medium and late maturing varieties. 2) In the transpiration of rice plants there is hardly any difference among varieties up to the fifth period, but the early maturing variety is the most vigorous in the sixth period, and the late maturing variety is more vigorous than others continuously after the seventh period. 3) The amount of transpiration of the sixth period for early maturing variety of the seventh period for medium and late maturing variety in which transpiration is the most vigorous, is 15% or 16% of the total amount of transpiration through all periods. 4) Transpiration of rice plants must be determined by using transpiration intensity as the standard coefficient of computation of amount of transpiration, because it originates in the physiological action.(Table 7) 5) Transpiration ratio of rice plants is approximately 450 to 480 6) Equations which are able to compute amount of transpiration of each variety up th the heading-flowering peried, in which the amount of transpiration of rice plants is the maximum in this study are as follows: Early maturing variety ; Y=0.658+1.088X Medium maturing variety ; Y=0.780+1.050X Late maturing variety ; Y=0.646+1.091X Y=amount of transpiration ; X=number of period. 7) As we know from figure 1 and 2, correlation between the amount evaporation from water surface in paddy fields and amount of transpiration shows high negative. 8) It is possible to calculate the amount of evaporation from the water surface in the paddy field for varieties used in this study on the base of ratio of it to amount of evaporation by atmometer(Table 11) and Table 10. Also the amount of evaporation from the water surface in the paddy field is to be computed by the following equations until the period in which it is the minimum quantity the sixth period for early maturing variety and the seventh period for medium or late maturing varieties. Early maturing variety ; Y=4.67-0.58X Medium maturing variety ; Y=4.70-0.59X Late maturing variety ; Y=4.71-0.59X Y=amount of evaporation from water surface in the paddy field X=number of period. 9) Changes in the amount of evapo-transpiration of each growing period have the same tendency as transpiration, and the maximum quantity of early maturing variety is in the sixth period and medium or late maturing varieties are in the seventh period. 10) The amount of evapo-transpiration can be calculated on the base of the evapo-transpiration intensity (Table 14) and Tablet 12, for varieties used in this study. Also, it is possible to compute it according to the following equations with in the period of maximum quantity. Early maturing variety ; Y=5.36+0.503X Medium maturing variety ; Y=5.41+0.456X Late maturing variety ; Y=5.80+0.494X Y=amount of evapo-transpiration. X=number of period. 11) Ratios of the total amount of evapo-transpiration to the total amount of evaporation by atmometer through all growing periods, are 1.23 for early maturing variety, 1.25 for medium maturing variety, 1.27 for late maturing variety, respectively. 12) Only air temperature shows high correlation in relation between amount of evapo-transpiration and climatic conditions from the viewpoint of Korean climatic conditions through all growing periods of rice plants. 2. Amount of percolation 1) The amount of percolation for computation of planning water requirment ought to depend on water holding dates. 3. Available rainfall 1) The available rainfall and its coefficient of each period during the growing season of paddy fields are shown in Table 8. 2) The ratio (available coefficient) of available rainfall to the amount of rainfall during the growing season of paddy fields seems to be from 65% to 75% as the standard in Korea. 3) Available rainfall during the growing season of paddy fields in the common year is estimated to be about 550 millimeters. 4. Effects to be influenced upon percolation by transpiration of rice plants. 1) The stronger absorbtive action is, the more the amount of percolation decreases, because absorbtive action of rice plant roots influence upon percolation(Table 21, Table 22) 2) In case of planting of rice plants, there are several entirely different changes in the amount of percolation in the forenoon, at night and in the afternoon during the growing season, that is, is the morning and at night, the amount of percolation increases gradually after transplantation to the peak in the end of July or the early part of August (wast or soil temperature is the highest), and it decreases gradually after that, neverthless, in the afternoon, it decreases gradually after transplantation to be at the minimum in the middle of August, and it increases gradually after that. 3) In spite of the increasing amount of transpiration, the amount of daytime percolation decreases gadually after transplantation and appears to suddenly decrease about head swelling dates or heading-flowering period, but it begins to increase suddenly at the end of August again. 4) Changs of amount of percolation during all growing periods show some variable phenomena, that is, amount of percolation decreases after the end of July, and it increases in end August again, also it decreases after that once more. This phenomena may be influenced complexly from water or soil temperature(night time and forenoon) as absorbtive action of rice plant roots. 5) Correlation between the amount of daytime percolation and the amount of transpiration shows high negative, amount of night percolation is influenced by water or soil temperature, but there is little no influence by transpiration. It is estimated that the amount of a daily percolation is more influenced by of other causes than transpiration. 6) Correlation between the amount of night percoe, lation and water or soil temp tureshows high positive, but there is not any correlation between the amount of forenoon percolation or afternoon percolation and water of soil temperature. 7) There is high positive correlation which is r=+0.8382 between the amount of daily percolation of planting pot of rice plant and amount and amount of daily percolation of non-planting pot. 8) The total amount of percolation through all growin. periods of rice plants may be influenced more from specific permeability of soil, water of soil temperature, and otheres than transpiration of rice plants.

  • PDF