이러닝(e-learning)은 정보통신 매체를 활용한 교육의 새로운 형태로 시간과 공간의 제약을 받지 않아 빠르게 확산되고 있는 추세이다. 그러나 이러닝은 아직 표준화가 되지 않아 학습 콘텐츠들이 중복적으로 개발되고 있다. 이러한 문제를 해결하기 위해 스콤(SCORM)이 제안되었다. 표준화로 인해 학습 콘텐츠의 공유성이 높아지면 콘텐츠의 재사용성이 증가한다. 그러므로 교육자나 콘텐츠 제작자가 학습코스를 생성할 때 편리하게 작업을 수행할 수 있는 방법이나 도구가 시급히 필요하다. 본 논문에서는 교육자나 콘텐츠 제작자가 교과목에 맞는 학습코스를 효율적으로 생성할 수 있는 연관기법을 제안한다. 본 논문에서 제안한 학습코스 생성 기법인 연관기법은 기존의 학습코스들과 학습 콘텐츠들을 활용하여 교과목에 맞는 학습코스를 생성하는 기법이다. 연관기법은 기존의 학습코스들에 존재하는 학습객체들의 통계적 정보와 학습객체간의 결합력을 분석하여 학습코스를 생성한다. 본 논문에서 제안한 연관기법은 교육자나 콘텐츠 제작자들이 학습코스를 편리하게 생성할 수 있도록 지원할 뿐만 아니라, 학습코스에 대한 가이드라인을 제공하는 역할을 한다.
음성향상기법은 음성에 포함된 잡음이나 잔향을 제거하는 기술로써 마이크로폰으로 입력된 음성신호는 잡음이나 잔향에 의해 왜곡되어지므로 음성인식, 음성통신 등의 음성신호처리 기술의 핵심 기술이다. 이전에는 음성신호와 잡음신호 사이의 통계적 정보를 이용하는 통계모델 기반의 음성향상기법이 주로 사용되었으나 통계 모델 기반의 음성향상기술은 정상 잡음 환경과는 달리 비정상 잡음 환경에서 성능이 크게 저하되는 문제점을 가지고 있었다. 최근 머신러닝 기법인 심화신경망 (DNN, deep neural network)이 도입되어 음성 향상 기법에서 우수한 성능을 내고 있다. 심화신경망을 이용한 음성 향상 기법은 다수의 은닉 층과 은닉 노드들을 통하여 잡음이 존재하는 음성 신호와 잡음이 존재하지 않는 깨끗한 음성 신호 사이의 비선형적인 관계를 잘 모델링하였다. 이러한 심화신경망 기반의 음성향상기법을 향상 시킬 수 있는 방법 중 하나인 강화학습을 적용하여 기존 심화신경망 대비 성능을 향상시켰다. 강화학습이란 대표적으로 구글의 알파고에 적용된 기술로써 특정 state에서 최고의 reward를 받기 위해 어떠한 policy를 통한 action을 취해서 다음 state로 나아갈지를 매우 많은 경우에 대해 학습을 통해 최적의 action을 선택할 수 있도록 학습하는 방법을 말한다. 본 논문에서는 composite measure를 기반으로 reward를 설계하여 기존 PESQ (Perceptual Evaluation of Speech Quality) 기반의 reward를 설계한 기술 대비 음성인식 성능을 높였다.
모집단의 최적군집 수를 자동으로 결정하고 군집내의 분산은 최소로 하고 군집 간의 분산은 최대로 하는 최적 군집화에 대한 연구는 대부분의 지능형 시스템에서 필요로 하는 모형전략이다. 하지만 아직도 대부분의 군집화 과정에서 분석가의 주관적인 경험에 의존하여 군집수가 결정되어 군집화가 이루어지고 있다. 예를 들어 K-평균 군집화 알고리즘에서도 초기에 K 값을 결정해 주어야 한다. 모집단을 제대로 대표하지 못한 K 값에 의한 군집화 결과는 심각한 오류를 범하게 된다. 본 논문에서는 통계적 학습이론을 이용하여 이러한 문제점을 해결하려고 하였다. VC-차원에 의한 Support Vector를 이용하여 최적의 군집화 기법을 제안하였다. 제안 방법의 성능 평가를 위하여 UCI 기계학습 데이터를 이용하여 객관적인 실험을 수행하였다.
이동통신에서 배경잡음이 존재하는 실제 환경에서 음성신호처리의 가장 중요한 이슈중의 하나는 강인한 음성검출기를 설계하는 것이다. 상대적으로 간단하면서도 성능이 우수하여 대표적인 음성검출기로 사용되는 통계적모델기반 기법은 각 주파수 채널별 우도비를 이용하여 음성검출 검출식을 만들어내는 방식이다. 최근, 변별적 가중치 학습 (discriminative weight training)을 이용하여 주파수 체널별 가중치가 인가된 우도비를 이용한 음성검출 결정식을 갖는 음성검출기가 제안 되었으며 상대적으로 우수한 성능을 보였다. 본 연구에서는 기존의 변별적 가중치 학습의 입력벡터에 이전프레임의 결정식을 궤환구조형태를 바탕으로 추가하는 새로운 방식을 제안한다. 제안된 기법은 비정상 (non-staionary) 잡음 환경에서 객관적인 방법을 통해 상호비교 분석되었으며 결론적으로 우수한 성능을 보였다.
영화 제작에 막대한 비용이 투입되지만 관객수요는 매우 불확실하기 때문에 개선된 수요예측은 수익 개선을 위한 의사결정의 중요 수단으로 활용될 수 있다. 본 연구에서는 영화의 개봉 후 수요를 예측함에 있어 기계학습 기법의 적용 타당성을 예측 성능의 관점에서 검증하였다. 분석결과를 종합하면 다음과 같다. 첫째, 대안변수에 대한 통계적 검증 결과 기본 영화 특성(감독, 배우)과 함께 개봉 후 2주차까지의 스크린수, 상영횟수, 관객수, 주요 배우에 대한 관심도 등 시계열 자료가 수요예측에 유의미한 것을 확인하였다. 둘째, Random Forest Classifier와 SVM(Support Vector Machine) 등 분류 기반 기계학습 기법과 Random Forest Regressor와 k-NN Regressor와 같은 회귀모형 기반 기계학습 기법에 적용하여 예측 성능을 평가한 결과, Random Forest 기법이 우수한 결과를 보였다. 셋째, 누적관객수가 1분위보다 작은 영화에서 회귀모형 기반 기법은 낮은 예측 정확도를 보였으며, 분류기반 기법은 반대로 가장 우수한 결과를 얻었다. 즉, 영화 수요의 분포 특성에 따라서 차별화된 기계학습 기법을 적용하는 것이 필요하다.
일반적으로 비정상행위를 탐지하는데 통계적인 기법을 사용하여 왔다. 본 논문에서는 통계적인 기법의 단점을 보완하기 위해 베이지안 네트워크(Bayesian Network)의 장점들을 이용한 비정상행위에 대한 판정 및 분석에 효과적인 방법을 연구하고자 한다. 리눅스 시스템의 감사자료(LSM audit data)로부터 사용자의 정상행위에 대해 베이지안 네트워크 학습에 효율적인 Sparse Candidate 알고리즘을 사용하고, 감사자료의 일부가 결여되어 있는 경우에도 추론이 가능하도록 Gibbs Sampling 방법을 적용하여 시스템 사용자의 비정상행위를 판정하는데 도움이 되도록 한다.
소프트웨어의 디버깅 오류의 발생 시간에 의존하는 많은 소프트웨어 신뢰성 모델이 연구되었다. 소프트웨어 오류 탐색 기법은 사전에 알지 못하지만 자동적으로 발견되는 에러를 고려한 영향요인과 사전 경험에 의하여 세밀하게 에러를 발견하기 위하여 테스팅 관리자가 설정해놓은 요인인 학습효과의 특성에 대한 문제를 비교 제시 하였다. 본 연구에서는 학습효과 비동질적인 유한고장모형 분석을 위한 모수 추정은 우도함수를 이용하였다. 소프트웨어 시장에 인도하기 위한 결정에 대하여 조건부 고장률은 중요한 변수가 되고 이러한 고장 모델은 실제 상황에서 많이 사용되고 있다. 통계적 공정 관리 (SPC)는 소프트웨어 오류의 예측을 모니터링 함으로써 소프트웨어의 신뢰성 향상에 크게 기여할 수 있다. 이러한 컨트롤 차트는 널리 소프트웨어 산업의 소프트웨어 프로세스 제어를 위해 사용된다. 본 연구에서는 로그 위험 학습 효과 속성의 비동질적인 포아송 과정의 평균값 기능을 사용한 컨트롤 메커니즘을 제안하였다.
중국어의 품사 태깅(part-of-speech tagging)을 위해서는 중국어 문장들은 내부 단어간의 명확한 분리가 없기 때문에 단어 분할(word segmentation)과 품사 태깅을 동시에 처리해야 한다. 본 논문은 규칙 기반(rule base)과 사전 기반(dictionary base) 기법을 혼합하여 구현한 단어 분할 시스템을 사용하여 입력 문장을 단어 단위로 분할하고, HMM(hidden Markov model) 기반 통계적 품사 태깅 기법을 사용한다. 특히, 본 논문에서는 주어진 말뭉치(corpus)로부터 자동 학습(automatic training)을 통해 품사 사전을 구축하여 구현된 시스템과 말뭉치간의 독립성을 유지한다. 말뭉치는 중국어 간체와 번체 모두를 대상으로 하고, 각 말뭉치로부터 자동 학습을 통해 얻어진 품사 사전으로 단어 분할과 품사 태깅을 한다. 실험결과들은 간체, 번체 각각의 단어 분할 성능과 품사 태깅 성능을 보여준다.
공백기술예측은 기술경영 분야에서 중요하게 다루어지는 주제이다. 다양한 분야에서 현재까지의 기술개발결과를 분석하여 상대적으로 연구개발이 이루어지지 못한 분야를 찾아내어 개발하는 것은 국가와 기업의 발전에 중요한 영향을 미친다. 현재 특허는 기술개발결과에 대한 가장 객관적인 데이터 중 하나이다. 본 논문에서는 특허데이터를 이용하여 공백기술을 정량적으로 예측할 수 있는 방법에 대하여 연구한다. 하나의 정량적 기술예측모형이 완벽하다는 보장을 할 수 없기 때문에 본 연구에서는 여러 가지 모형들의 결과를 결합하여 예측하는 앙상블모형을 제안한다. 통계적 분석기법과 기계학습 알고리즘을 결합하여 보다 객관적이고 정확한 공백기술예측모형을 구축한다. 제안방법의 객관적인 성능평가를 위하여 각 기술분야에 대하여 최초 특허가 이루어진 시점부터 최근까지 출원, 등록된 특허데이터를 이용한다.
본 연구의 목적은 특정 금융기관의 주거래기업들에 대한 부실예측을 위해 주거래기업들을 잠식, 도산, 그리고 건전기업과 같이 세집단으로 구분하여 예측하고자 하며, 기업부실 예측력에 영향을 미치는 세 가지 요인으로서 표본구성, 투입 변수, 분석 기법의 관점에서 다음을 살펴보는 것이다. 첫째, 기업부실예측에서 전통적인 delta learning rule과 sigmoid함수를 사용한 역전파학습(신경망 I)과 이들의 변형형태인 normalized cumulative delta learning rule과 hyperbolic tangent함수를 사용한 역전파 학습(신경망 II)과의 예측력의 차이를 살펴보고 또한 이러한 두가지 신경망기법의 예측력을 MDA(다변량판별분석) 결과와 비교하여 신경망기법에 대한 예측력의 유용성을 살펴보고자 한다. 둘째, 세집단분류문제에서는 잠식, 도산, 건전기업의 구성비율이 위의 세가지 예측기법의 결과에 어떠한 영향을 미치는지를 살펴보고자 한다. 세째, 투입 변수선정은 기존연구 또는 이론을 바탕으로 연구자의 판단에 의해 선택하는 방법과 다수의 변수를 가지고 통계적기법에 의해 좋은 판별변수의 집합을 찾는 것이다. 본 연구에서는 이러한 방법들에 의해 선정된 투입변수들이 세가지 예측기법의 결과에 어떠한 영향을 미치는지를 살펴보고자 한다. 이러한 관점에서 본 연구의 실증분석 결과를 요약하면 다음과 같다. 1) 신경망기법이 두집단에서와 같이 세집단 분류문제에서도 MDA보다는 더 높은 예측력을 보였다. 2) 잠식과 도산기업의 수는 비슷하게 그리고 건전기업의 수는 잠식과 도산기업을 합한 수와 비슷하게 표본을 구성하는 것이 예측력을 향상하는데 도움이 된다고 할 수 있다. 3) 속성별로 고르게 투입변수로 선정한 경우가 그렇지 않은 경우보다 더 높은 예측력을 보였다. 4) 전통적인 delta learning rule과 sigmoid함수를 사용한 역전파학습 보다는 normalized cumulative delta learning rule과 hyperbolic tangent함수를 사용한 역전파 학습이 더 높은 예측력을 보였다. 이러한 현상은 두집단문제에서 보다 세집단문제에서 더 큰 차이를 나타내고 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.