• Title/Summary/Keyword: 통계적 패턴인식

Search Result 84, Processing Time 0.026 seconds

Improving Performance of Continuous Speech Recognition Using Error Pattern Training and Post Processing Module (에러패턴 학습과 후처리 모듈을 이용한 연속 음성 인식의 성능향상)

  • 김용현;정민화
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.441-443
    • /
    • 2000
  • 연속 음성 인식을 하는 경우에 많은 에러가 발생한다. 특히 기능어의 경우나 서술어의 경우에는 동시 조음 현상에 의한 음운 변화에 의해 빈번한 에러가 발생한다. 이러한 빈번한 에러를 수정하기 위한 방법에는 언어 모델의 개선과 음향 모델의 개선등을 통한 인식률 향상과 여러 단계의 인식과정을 두어 서로 다른 언어 모델을 적용하는 등의 방법이 있지만 모두 시간과 비용이 많이 들고 각각의 상황에 의존적인 단점이 있다. 따라서 본 논문에서 제안하는 방법은 이것을 수정하기 위해 음성 인식기로부터 인식되어 나온 결과 문장을 정답과 비교, 학습함으로써 빈번하게 에러 패턴을 통계적 방법에 의해 학습하고 후처리 모듈을 이용하여 인식시에 발생하는 에러를 적은 비용과 시간으로 수정할 수 있도록 하는 것이다. 실험은 3000 단어급의 한국어 낭독체 연속 음성을 대상으로 하여 형태소와 의사형태소를 각각 인식단위로 하고, 언어모델로 World bigram과 Tagged word bigram을 각각 적용 실험을 하였다. 형태소, 의사 형태소일 경우 모두 언어 모델을 tagged word bigram을 사용하였을 경우 N best 후보 문장 중 적당한 단어 후보의 분포로 각각 1 best 문장에 비해 12%, 18%정도의 에러 수정하여 문장 인식률 향상에 상당한 기여를 하였다.

Implementation of Hand Writing Interface-based Calculator Using Sequential Ordering (순차적 정렬을 이용한 필기 인터페이스 기반의 계산기 구현)

  • 강경완;김보중;정성환
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2004.05a
    • /
    • pp.255-258
    • /
    • 2004
  • 본 논문에서는 필기수식의 인식 및 계산을 목적으로 입력 필기수식의 심볼별 분리 및 순차적 정렬 후 인식하는 알고리즘을 제안한다. 제안된 방법은 온라인 필기인식의 특징인 실시간 개념을 이용하여 태블릿 상에서 입력받은 수식의 픽셀별 좌표를 입력받아서 분리 과정을 수행 한 후, 필기순서와 무관한 순차적인 하나의 완성된 수식을 제공한다. 다음으로 통계적 패턴 정합 및 숫자별 특정 가중치를 이용하여 완성된 수식을 인식하고 계산 결과를 출력한다. 본 모듈은 PDA에 임베디드를 목적으로 구현하였으며, 여러 검증과정을 통해 약 98%의 인식률 향상을 얻을 수 있었다.

  • PDF

Radar Signal Pattern Recognition Using PRI Status Matrix and Statistics (PRI 상태행렬과 통계값을 이용한 레이더 PRI 신호패턴 인식)

  • Lee, Chang-ho;Sung, Tae-kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.775-778
    • /
    • 2016
  • In this paper, we propose a new method to automatically recognize PRI modulation type of radar signal at ES(Electronic Support) in electronic singal environment. The propose method stores pattern of PRI(Pulse Repetition Interval) of radar signal and uses statistic data, which firstly classifies into 2 classes. Then the proposed method recognizes each PRI signal using statistic characteristic of PRI. We apply various 5 kinds of PRI signal such as constant PRI, jitter PRI, D&S(dwell & switch) PRI, stagger PRI, sliding PRI, etc. The result shows the proposed method correctly identifies various PRI signals.

  • PDF

Creation Methods of Fuzzy Membership Functions Based on Statistical Information for Fuzzy Classifier (퍼지 분류기를 위한 통계적 정보 기반의 퍼지 함수 설정 기법)

  • Shin, Sang-Ho;Han, Soowhan;Woo, Young Woon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.379-382
    • /
    • 2009
  • 패턴 인식에서 분류기 모형으로 많이 사용되는 퍼지 분류기는 퍼지 소속 함수를 적절히 설정함으로써 보다 향상된 분류 성능을 얻을 수 있다는 장점이 있다. 그러나 일반적으로 함수 설정은 인식문제 분야의 특성이나 해당 전문가의 지식과 주관적 경험을 기반으로 설정되므로 설정된 소속도 함수의 일관성과 객관성을 보장하기가 어려운 문제점을 갖고 있다. 따라서 이 논문에서는 퍼지 분류기의 소속도 함수를 설정하기 위한 객관적 기준을 제시하기 위하여 특징값들 간의 통계적 정보를 이용한 소속도 함수 설정 기법들을 제안하였다. 제안한 기법들을 이용하여 UCI machine learning repository 사이트에서 제공되는 표준 데이터 중에 Iris 데이터 세트를 이용하여 실험하고 그 결과를 비교, 분석하였다.

  • PDF

Recognition of Control Chart Pattern using Bi-Directional Kohonen Network and Artificial Neural Network (Bi-Directional Kohonen Network와 인공신경망을 사용한 관리도 패턴 인식)

  • Yun, Jae-Jun;Park, Cheong-Sool;Kim, Jun-Seok;Baek, Jun-Geol
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.4
    • /
    • pp.115-125
    • /
    • 2011
  • Manufacturing companies usually manage the process to achieve high quality using various types of control chart in statistical process control. When an assignable cause occurs in a process, the data in the control chart changes with different patterns by the specific causes. It is important in process control to classify the CCP (Control Chart Pattern) recognition for fast decision making. In former research, gathered data from process used to apply as raw data, leads to degrade the performance of recognizer and to decrease the learning speed. Therefore, feature based recognizer, employing feature extraction method, has been studied to enhance the classification accuracy and to reduce the dimension of data. We propose the method to extract features that take the distances between CCP data and reference vector generated from BDK (Bi-Directional Kohonen Network). We utilize those features as the input vectors in ANN (Artificial Neural Network) and compare with raw data applied ANN to evaluate the performance.

Feeature extraction for recognition rate improvemen of hand written numerals (필기체 숫자 인식률 향상을 위한 특징추출)

  • Koh, Chan;Lee, Chang-In
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.10
    • /
    • pp.2102-2111
    • /
    • 1997
  • Hand written numeral is projected on the 3D space after pre-processing of inputs and it makes a index by tracking of numerals. It computes the distance between extracted every features. It is used by input part of recognition process from the statistical historgram of the normalization of data in order to adaptation from variation. One hundred unmeral patterns have used for making a standard feature map and 100 pattern for the recogintion experiment. The result of it, we have the recoginition rete is 93.5% based on thresholding is 0.20 and 97.5% based on 0.25.

  • PDF

Local Prominent Directional Pattern for Gender Recognition of Facial Photographs and Sketches (Local Prominent Directional Pattern을 이용한 얼굴 사진과 스케치 영상 성별인식 방법)

  • Makhmudkhujaev, Farkhod;Chae, Oksam
    • Convergence Security Journal
    • /
    • v.19 no.2
    • /
    • pp.91-104
    • /
    • 2019
  • In this paper, we present a novel local descriptor, Local Prominent Directional Pattern (LPDP), to represent the description of facial images for gender recognition purpose. To achieve a clearly discriminative representation of local shape, presented method encodes a target pixel with the prominent directional variations in local structure from an analysis of statistics encompassed in the histogram of such directional variations. Use of the statistical information comes from the observation that a local neighboring region, having an edge going through it, demonstrate similar gradient directions, and hence, the prominent accumulations, accumulated from such gradient directions provide a solid base to represent the shape of that local structure. Unlike the sole use of gradient direction of a target pixel in existing methods, our coding scheme selects prominent edge directions accumulated from more samples (e.g., surrounding neighboring pixels), which, in turn, minimizes the effect of noise by suppressing the noisy accumulations of single or fewer samples. In this way, the presented encoding strategy provides the more discriminative shape of local structures while ensuring robustness to subtle changes such as local noise. We conduct extensive experiments on gender recognition datasets containing a wide range of challenges such as illumination, expression, age, and pose variations as well as sketch images, and observe the better performance of LPDP descriptor against existing local descriptors.

A Histogram Matching Scheme for Color Pattern Classification (컬러패턴분류를 위한 히스토그램 매칭기법)

  • Park, Young-Min;Yoon, Young-Woo
    • The KIPS Transactions:PartB
    • /
    • v.13B no.7 s.110
    • /
    • pp.689-698
    • /
    • 2006
  • Pattern recognition is the study of how machines can observe the environment, learn to distinguish patterns of interest from their background, and make sound and reasonable decisions about the categories of the patterns. Color image consists of various color patterns. And most pattern recognition methods use the information of color which has been trained and extract the feature of the color. This thesis extracts adaptively specific color feature from images with several limited colors. Because the number of the color patterns is limited, the distribution of the color in the image is similar. But, when there are some noises and distortions in the image, its distribution can be various. Therefore we cannot extract specific color regions in the standard image that is well expressed in special color patterns to extract, and special color regions of the image to test. We suggest new method to reduce the error of recognition by extracting the specific color feature adaptively for images with the low distortion, and six test images with some degree of noises and distortion. We consequently found that proposed method shouws more accurate results than those of statistical pattern recognition.

An Enhanced Counterpropagation Algorithm for Effective Pattern Recognition (효과적인 패턴 인식을 위한 개선된 Counterpropagation 알고리즘)

  • Kim, Kwang-Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.9
    • /
    • pp.1682-1688
    • /
    • 2008
  • The Counterpropagation algorithm(CP) is a combination of Kohonen competition network as a hidden layer and the outstar structure of Grossberg as an output layer. CP has been used in many real applications for pattern matching, classification, data compression and statistical analysis since its learning speed is faster than other network models. However, due to the Kohonen layer's winner-takes-all strategy, it often causes instable learning and/or incorrect pattern classification when patterns are relatively diverse. Also, it is often criticized by the sensitivity of performance on the learning rate. In this paper, we propose an enhanced CP that has multiple Kohonen layers and dynamic controlling facility of learning rate using the frequency of winner neurons and the difference between input vector and the representative of winner neurons for stable learning and momentum learning for controlling weights of output links. A real world application experiment - pattern recognition from passport information - is designed for the performance evaluation of this enhanced CP and it shows that our proposed algorithm improves the conventional CP in learning and recognition performance.

A Multiple SVM Classifier Combined With Neural Networks (신경망을 결합한 다중 SVM 분류기)

  • 고재필;김승태;김은주;변혜란
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.163-165
    • /
    • 2001
  • 최근 기계학습 분야에서 커널머신을 이용한 대표적 학습기로서 Support Vector Machine(SVM)이 주목받고 있다. SVM은 통계학자인 Vapnik에 의해 제안된 것으로 통계적 학습이론에 기반 하여 뛰어난 일반화 성능을 보여준다. 그러나. SVM은 2클래tm 분류기이므로 일반적인 다중 클래스 패턴인식 문제에 적용할 수 없다. 본 논문에서는 이를 해결하기 위해 SVM을 신경망과 결합하여 다중 클래스 분류기로 확장하는 방법을 새롭게 제안한다. 제안하는 분류기의 성능을 비교하기 위하여 ORL얼굴 데이터를 이용하여 제안하는 분류기와 기존의 대표적인 다중 SVM, 신경망, PCA를 적응한 얼굴인식 실험을 수행하였다. 실험결과 제안하는 분류기를 이용한 얼굴인식률이 기존의 다중 SVM을 이용한 경우보다 3%, 신경망을 이용한 경우보다 6% 높은 수치를 보였다.

  • PDF