• Title/Summary/Keyword: 통계적 모델

Search Result 1,123, Processing Time 0.036 seconds

Image Segmentation and Determination of the Count of Clusters using Modified Fuzzy c-Means Clustering Algorithm (변형된 FCM을 이용한 칼라영상의 영역분할과 클러스터 수 결정)

  • 윤후병;정성종;안동언;두길수
    • Proceedings of the IEEK Conference
    • /
    • 2001.06c
    • /
    • pp.177-180
    • /
    • 2001
  • 영상에 존재하는 객체들을 인식하기 위해서는 먼저 영상의 영역분할이 필요하다. 통계적 모델을 이용한 영상의 영역분할은 미리서 분할하고자 하는 클러스터의 수를 결정한 후 이를 토대로 영상을 분할하게 된다. 그러나 영상마다 특성상 분할하고자 하는 클러스터 수가 다를 경우 이를 수동적으로 해주는 것은 비능률적이다. 따라서 본 논문은 영상의 영역분할에 통계적 모델에서 미리 결정해줘야 하는 클러스터의 수 문제를 자동으로 검출하고 퍼지 c-Means 글러스터링 알고리즘을 통한 영상의 영역분할 시 노이즈문제를 이웃한 픽셀들의 멤버쉽 값을 평균화합으로써 해결하는 방법을 제안하였다.

  • PDF

Design of a Statistical Model Based Voice Activity Detector (통계적 모델에 근거한 음성 검출기의 설계)

  • 손종서
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.08a
    • /
    • pp.465-469
    • /
    • 1998
  • 가변 전송율 음성 부호화기를 위한 음성 검출기를 통계적 모델을 적용하여 설계한다. 제안된 음성 검출기는 음성 파라미터를 decision-directed 방식으로 추정함으로써 LRT를 이용하여 동작 특성이 우수한 판정 규칙을 유도한다. 또한 음성 발생 사건들을 1차의 Markov process 로 모델링 함으로써 과거의 관찰들을 현재 프레임의 음성 검출 과정에서 고려할 수 있는 행오버 알고리즘을 개발한다. 개발된 음성 검출기는 고려된 실험환경에서 ITU-T 표준인 G.729 Annex B 음성 검출기보다 맹 우수한 성능을 나타내었다.

  • PDF

Determination of the Count of Clusters and Image Segmentation using Modified Fuzzy c-Means Clustering Algorithm (영상의 클러스터 수 결정과 변형된 퍼지 c-Means 클러스터링을 이용한 영역 분할)

  • 윤후병;정성종;안동언
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.598-600
    • /
    • 2000
  • 영상에 존재하는 객체들을 인식하기 위해서는 먼저 영상의 영역 분할이 필요하다. 통계적 모델을 이용한 영상의 영역 분할은 미리서 분할하고자 하는 클러스터의 수를 결정한 후 이를 토대로 영상을 분할하게 된다. 그러나 영상마다 특성상 분할하고자 하는 클러스터 수가 다를 경우 이를 수동적으로 해주는 것은 비능률적이다. 따라서 본 논문은 영상의 영역 분할에 통계적 모델에서 미리 결정해줘야 하는 클러스터의 수 문제를 자동으로 검출하고 퍼지 c-Means 클러스터링 알고리즘을 통한 영상의 영역 분할 시 노이즈 문제를 이웃한 픽셀들의 멤버쉽 값을 평균화함으로써 해결하는 방법을 제안하였다.

  • PDF

Optimization of Generalized Regression Neural Network Using Statistical Processing (통계적 처리를 이용한 일반화된 회귀 신경망의 분류성능의 최적화)

  • Kim, Geun-Ho;Kim, Byun-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2749-2751
    • /
    • 2002
  • 일반화된 회귀 신경망 (GRNN)을 이용하여 플라즈마을 분류하는 새로운 알고리즘을 보고한다. 데이터분포를 통계적인 평균치와 표준편차를 이용하여 특징지었으며, 바이어스 인자을 이용하여 9 종류의 데이터을 발생하였다. 각 데이터에 대하여 GRNN의 학습인자를 최적화하였으며, 모델성능은 예측과 분류 정확도로 나누어 바이어스와 학습인자의 함수로 분석하였다. 바이어스는 모델성능에 상당한 영향을 주었으며, 학습인자와의 상호작용을 통하여 완전 분류를 이루었다.

  • PDF

Automatic Foreign Word Transliteration Model for Information Retrieval (정보검색을 위한 외래어 자동표기 모델)

  • 이재성;최기선
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 1997.08a
    • /
    • pp.17-24
    • /
    • 1997
  • 조사에 따르면 한글 문서에서 사용되는 단어 중 외래어 또는 영어가 포함된 단어가 약 26%정도를 차지하고 있으며, 이는 정보검색의 중요 색인어로 사용된다(권윤형 1996). 그러나 이들 단어들은 서로 같은 단어인데도 영어로 표기되기도 하고 이형의 외래어들로 표기되기도 하여, 정보검색의 효율을 떨어뜨리고 있다. 본 논문에서는 영어 단어와 그에 대응되어 표기되는 외래어들을 찾기 위한 한 단계로서, 영어를 한글로 음차(transliteration)하여 자동표기하는 통계적 모델을 제안하고 실험한다. 제안된 모델은 통계적 기계번역 방식과 그의 한 방법인 문서 정렬(text alignment) 방식에 근거하고 있다. 특히 이 모델에서는 효과적으로 발음의 단위를 분리한 다음 정렬을 하여. 전체적인 계산량을 줄이고 성능도 향상시켰다. 음차표기는 피봇방식과 직접방식의 두가지로 구현하였다. 피봇방식은 영어에서 발음을 생성한 후, 그 발음을 다시 한글로 표기하는 방식이고, 직접방식은 직접 영어 단어에서 한글 표기로 포기하는 방식이다. 두 방식을 제안된 모델을 이용하여 비교 테스트한 결과 직접방식이 보다 정확하게 표준 외래어로 표기하였다.

  • PDF

Estimation of Variability for Complex Modulus of Rubber Considering Temperature and Material Uncertainties (온도와 물성의 불확실성을 고려한 고무의 복소계수 변동성 평가)

  • Lee, Doo-Ho;Hwang, In-Sung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.362-365
    • /
    • 2011
  • 본 논문에서는 통계적인 방법을 이용하여 점탄성 제진재인 합성고무의 물성에 대한 변동성을 평가하는 방법을 제안하고 측정데이터를 이용하여 합성고무에 대한 평가를 수행하였다. 고무 물성의 불확실성 인자로는 외기 온도의 변화와 실험 데이터의 오차 및 점탄성 제진모델의 오차를 고려하였다. 고무는 분수차 미분 모델로 표현되었고 온도의 영향은 비선형 이동계수모델을 도입하여 복소계수로 나타내어 동강성과 감쇠를 표현하였다. 이러한 물성모델을 바탕으로 고무에 대한 물성 실험데이터와 물성계수의 확률밀도함수 사이에 정의된 우도함수를 최대화하는 통계적 보정방법을 이용하여 물성모델의 물질계수들에 대한 변동성을 추정하였다.

  • PDF

Development and Application of Statistical Programs Based on Data and Artificial Intelligence Prediction Model to Improve Statistical Literacy of Elementary School Students (초등학생의 통계적 소양 신장을 위한 데이터와 인공지능 예측모델 기반의 통계프로그램 개발 및 적용)

  • Kim, Yunha;Chang, Hyewon
    • Communications of Mathematical Education
    • /
    • v.37 no.4
    • /
    • pp.717-736
    • /
    • 2023
  • The purpose of this study is to develop a statistical program using data and artificial intelligence prediction models and apply it to one class in the sixth grade of elementary school to see if it is effective in improving students' statistical literacy. Based on the analysis of problems in today's elementary school statistical education, a total of 15 sessions of the program was developed to encourage elementary students to experience the entire process of statistical problem solving and to make correct predictions by incorporating data, the core in the era of the Fourth Industrial Revolution into AI education. The biggest features of this program are the recognition of the importance of data, which are the key elements of artificial intelligence education, and the collection and analysis activities that take into account context using real-life data provided by public data platforms. In addition, since it consists of activities to predict the future based on data by using engineering tools such as entry and easy statistics, and creating an artificial intelligence prediction model, it is composed of a program focused on the ability to develop communication skills, information processing capabilities, and critical thinking skills. As a result of applying this program, not only did the program positively affect the statistical literacy of elementary school students, but we also observed students' interest, critical inquiry, and mathematical communication in the entire process of statistical problem solving.

Fire Detection in Outdoor Using Statistical Characteristics of Smoke (연기의 통계적 특성을 이용한 실외 화재 감지)

  • Kim, Hyun-Tae;Park, Jang-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.2
    • /
    • pp.149-154
    • /
    • 2014
  • Detection performance of fire detection in the outdoor depends on weather conditions, the shadow by the movement of the sun, or illumination changes. In this paper, a smoke detection in conjunction with a robust background estimate algorithm to environment change in the outdoor in daytime is proposed. Gaussian Mixture Model (GMM) is applied as background estimation, and also, statistical characteristics of smoke is applied to detect the smoke for separated candidate region. Through the experiments with input videos obtained from a various weather conditions, the proposed algorithms were useful to detect smoke in the outdoor.

The Verification for Extreme Hydrological Variables of HadGEM3-RA (HadGEM3-RA 자료의 극치수문변수에 대한 검증)

  • Sung, Jang-Hyun;Kang, Hyun-Suk;Park, Su-Hee;Cho, Chun-Ho;Kim, Young-Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.122-122
    • /
    • 2011
  • 수자원 분야에서 기후변화 관련 연구는 치수 측면 보다는 이수 측면에서 주로 이뤄지고 있다. 이는 홍수분석을 위한 시간 단위를 충족시켜주는 전지구 대기순환모형(Global Circulation Model: GCM)의 자료가 드물고, 시간 단위의 GCM 자료라 하더라도 극치값(extreme value) 표현에는 한계가 있기 때문이다. 이를 극복하기 위하여 과거 관측자료의 통계적 특성으로 극치자료의 편의(bias)를 보정하고 시간 단위로 분해하기도 한다. 하지만 이런 통계적 상세화(statistical downscaling)는 미래 기후는 과거자료와 통계적 차이가 유의하지 않음을 가정하고 있어, 미래 기후는 현재와 다를 것이라는 공감대에 는 적합하지 않다. 이와 같은 이유로 타당한 극치수문변수 결과를 얻기 위해서는 시간 단위의 고분해능(high resolution) GCM이나 지역기후모델(regional climate model)과 같은 고해상도의 미래 기후변화 자료가 필요하게 된다. 이에 국립기상연구소에서는 영국 기상청의 통합모델(UM)기반의 지역기후모델(HadGEM3)을 사용하여 50 km 및 12.5 km 격자 단위로 역학적 상세화(dynamic downscaling)를 수행하였다. 본 연구에서는 개발된 HadGEM3-RA 결과의 극치수문변수 검증을 위하여 한강유역의 관측 자료와 다양한 방법으로 비교하였다. 두 자료의 극치값을 GEV (Generalized Extreme Value) 분포에 적합(fitting)시켜 비초과확률별 극치사상과, 특정 임계값(threshold value) 이상의 극치사상 발생확률을 비교하였다. 검토 결과, HadGEM3-RA는 통계적 상세화로 구한 극치값 보다는 작았으나 기존의 지역 기후모델에 비하여 현실성 있는 극치값이 계산되었음을 확인하였다.

  • PDF