A main goal of pharmacogenomics studies is to predict individual's drug responsiveness based on high dimensional genetic variables. Due to a large number of variables, feature selection is required in order to reduce the number of variables. The selected features are used to construct a predictive model using machine learning algorithms. In the present study, we applied several hybrid feature selection methods such as combinations of logistic regression, ReliefF, TurF, random forest, and LASSO to a next generation sequencing data set of 400 epilepsy patients. We then applied the selected features to machine learning methods including random forest, gradient boosting, and support vector machine as well as a stacking ensemble method. Our results showed that the stacking model with a hybrid feature selection of random forest and ReliefF performs better than with other combinations of approaches. Based on a 5-fold cross validation partition, the mean test accuracy value of the best model was 0.727 and the mean test AUC value of the best model was 0.761. It also appeared that the stacking models outperform than single machine learning predictive models when using the same selected features.
The Transactions of the Korea Information Processing Society
/
v.3
no.1
/
pp.211-224
/
1996
In the research area of estimation of the software development efforts, a number of researches have been accomplished in order to control the costs and to make software more competitive. However, most of them were restricted to the functional algorithm models or the statistic models. Moreover, since they are dealing with the cases of foreign countries, the results are hard to apply directly to the domestic environment for the efficient project management because of lack of accuracy, fitness, flexibility and portability. Therefore, it is appropriate to suggest and propose a new approach supported by artificial neural network which is composed of back propagation and feel-forward algorithms to improve the exactness of the efforts estimation and to advance practical uses. In this study, the artificial neural network approach is used to model the software cost estimation and the results are compared with the revised COCOMO and the multiregression model in order to validate the superiority of the model.
Journal of Korean Society of Coastal and Ocean Engineers
/
v.30
no.2
/
pp.84-94
/
2018
In order to overcome the limitation of deterministic forecast, an ensemble forecasting system for regional ocean wave is developed. This system predicts ocean wind waves based on the meteorological forcing from the Ensemble Prediction System for Global of the Korea Meteorological Administration, which is consisted of 24 ensemble members. The ensemble wave forecasting system is evaluated by using the moored buoy data around Korea. The root mean squared error (RMSE) of ensemble mean showed the better performance than the deterministic forecast system after 2 days, especially RMSE of ensemble mean is improved by 15% compared with the deterministic forecast for 3-day lead time. It means that the ensemble method could reduce the uncertainty of the deterministic prediction system. The Relative Operating Characteristic as an evaluation scheme of probability prediction was bigger than 0.9 showing high predictability, meaning that the ensemble wave forecast could be usefully applied.
Transactions of the Korean Society of Mechanical Engineers
/
v.17
no.5
/
pp.1193-1201
/
1993
A new deformation resistance model for hot steel strip rolling process was formulated to improve the accuracy of roll force estimation. To improve the existing deformation resistance model more precisely, a modification function was introduced in this study. For the modification function, several factors considering material and operational conditions have been investigated and the optimal modification function was determined under the principle of minimum variability. The newly formulated modification function was applied to the deformation resistance model for ultra-low carbon steel and showed improved accuracy with about 30% decrease in terms of standard deviation of predicted roll force values against measured ones.
Transactions of the Korean Society for Noise and Vibration Engineering
/
v.14
no.4
/
pp.276-286
/
2004
현재. 미 연방도로부에서는 도로교통소음분석을 위한 예측모형 (TNM & STAMINA)을 미 전 지역에 제공하고 있고, 이와 관련된 여러가지 연구논문들이 수행되고 있는바, 모델을 이용한 예측치와 실측치 간의 비교$.$분석 연구논문을 통하여 차이점이 존재하는 것을 증명하고 있다. 따라서 본 연구논문은 소음예측모형의 핵심자료로 사용될 수 있는 루이빌대(UofL) 회귀모형들을 차종별 (소형, 중형, 대형) 그리고 주별 (아리조나. 콜로라도, 조지아, 캔사스, 와싱톤)로 구분하여 그 차이점을 통계적으로 비교$.$분석$.$결론을 도출하였다. 그 결과 아리조나와 콜로라도(중대형)를 제외한 나머지 개별 State-specific데이터는 통계적으로 서로 다른 것으로 나타났다.
Prediction technique of user's intention can be used as a post-processing method for reducing the search space of an automatic speech recognizer. Prediction technique of system's intention can be used as a pre-processing method for generating a flexible sentence. To satisfy these practical needs, we propose a statistical model to predict speakers' intentions that are generalized into pairs of a speech act and a concept sequence. Contrary to the previous model using simple n-gram statistic of speech acts, the proposed model represents a dialogue history of a current utterance to a feature set with various linguistic levels (i.e. n-grams of speech act and a concept sequence pairs, clue words, and state information of a domain frame). Then, the proposed model predicts the intention of the next utterance by using the feature set as inputs of CRFs (Conditional Random Fields). In the experiment in a schedule management domain, The proposed model showed the precision of 76.25% on prediction of user's speech act and the precision of 64.21% on prediction of user's concept sequence. The proposed model also showed the precision of 88.11% on prediction of system's speech act and the Precision of 87.19% on prediction of system's concept sequence. In addition, the proposed model showed 29.32% higher average precision than the previous model.
Kim, Inhea;Huh, Keun Young;Jung, Hyun Jong;Choi, Su Min;Park, Jae Hyoen
Horticultural Science & Technology
/
v.32
no.2
/
pp.241-251
/
2014
This study was carried out to develop a simple, rapid and reliable assessment model to predict cold tolerance in Pittosporum tobira, a broad-leaved evergreen commonly used in the southern region of South Korea, which can minimize the possible experimental errors appeared in a electrolyte leakage test for cold tolerance assessment. The modeling procedure comprised of regrowth test and a electrolyte leakage test on the plants exposed to low temperature treatments. The lethal temperatures estimated from the methodological combinations of a electrolyte leakage test including tissue sampling, temperature treatment for potential electrical conductivity, and statistical analysis were compared to the results of the regrowth test. The highest temperature showing the survival rate lower than 50% obtained from the regrowth test was $-10^{\circ}C$ and the lethal was $-10^{\circ}C{\sim}-5^{\circ}C$. Based on the results of the regrowth test, several methodological combinations of electrolyte leakage tests were evaluated and the electrolyte leakage lethal temperatures estimated using leaf sample tissue and freeze-killing method were closest to the regrowth lethal temperature. Evaluating statistical analysis models, linear interpolation had a higher tendency to overestimate the cold tolerance than non-linear regression. Consequently, the optimal model for cold tolerance assessment of P. tobira is composed of evaluating electrolyte leakage from leaf sample tissue applying freeze-killing method for potential electrical conductivity and predicting lethal temperature through non-linear regression analysis.
In this paper, we propose two predictive spatial data mining based on spatial statistics and apply for predicting the forest fire hazardous area. These are conditional probability and likelihood ratio methods. In these approaches, the prediction models and estimation procedures are depending un the basic quantitative relationships of spatial data sets relevant forest fire with respect to selected the past forest fire ignition areas. To make forest fire hazardous area prediction map using the two proposed methods and evaluate the performance of prediction power, we applied a FHR (Forest Fire Hazard Rate) and a PRC (Prediction Rate Curve) respectively. In comparison of the prediction power of the two proposed prediction model, the likelihood ratio method is mort powerful than conditional probability method. The proposed model for prediction of forest fire hazardous area would be helpful to increase the efficiency of forest fire management such as prevention of forest fire occurrence and effective placement of forest fire monitoring equipment and manpower.
KSCE Journal of Civil and Environmental Engineering Research
/
v.13
no.3
/
pp.163-172
/
1993
A probabilistic approach for evaluation of prediction of the strains using Lade's single surface constitutive model was employed, based on first-order approximate mean and variance. Several experiments such as isotropic compression and drained triaxial compression tests were conducted to examine the variabilities of soil parameters for Lade's model. By taking into account the results of the experimental data such as mean values and standard deviations of soil parameter's, a new probabilistic approach, which explains the uncertainty of computed strains, is applied. The magnitude of the COV for each parameter and the correlation coefficient between the two parameters can be effectively used for reducing the number of the parameters for the model. It is concluded that Lade's single surface constitutive model is surperior model for the prediction of the strain, because the COV of strains is under the "0.51".
Recently, the project related to the smart grid are being actively studied around the developed world. In particular, the long-term stabilization measures distributed power supply problem has been highlighted. In this paper, we propose a three-dimensional numerical weather prediction models to compare the error rate information which combined with the physical models and statistical models to predict the output of distributed power. Proposed model can predict the system for a stable power grid-can improve the prediction information of the distributed power. In performance evaluation, proposed model was a generation forecasting accuracy improved by 4.6%, temperature compensated prediction accuracy was improved by 3.5%. Finally, the solar radiation correction accuracy is improved by 1.1%.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.