한의학 통계의 생산, 관리 및 제공은 구체적이고 객관적인 데이터를 활용한 한의학 정책의 수립과 근거에 기반한 한의학 연구를 위해 필수적인 요소이다. 그러나 현재 한방 통계 서비스는 정부와 민간의 유관 단체가 산별적으로 제공하는 상황에서 체계적이고 통합적인 서비스가 이루어지고 있지 않기 때문에 이용자는 신뢰할 수 있으며 유용한 가치를 가진 데이터의 검색, 획득 및 활용에 많은 어려움이 있다. 본 연구는 각 기관에서 생산하는 한의학 관련 통계자료를 분석하여 이용자가 편리하게 이용할 수 있도록 한방 통계를 7가지 분야로 구분하고, 분야별 서비스 통계 항목을 분석하였다. 서비스 이용에 대한 시나리오 설계를 바탕으로 테이블 동적생성기법을 이용하여 데이터베이스를 설계하였으며 Excel Import, Statistics Analysis, Chart Creation, Search Engine의 4개 모듈로 이루어진 시스템을 설계하여 사용자가 원하는 형태의 통계 가공 기능을 제공하는 시스템을 구현하였다. 한방 통계 시스템은 사용자에게 필요한 통계를 검색하고 통계 정보를 획득하는데 많은 유연성을 제공할 것으로 기대된다.
정보기술과 컴퓨터 기술의 급속한 성장에 따른 데이터의 양적 증가로 최근 다양한 분야에서 과학적이고 정교한 분석이 요구되고 있다. 특히 은행분야는 금융환경과 소비자의 태도변화로 오래 전부터 축적해온 고객에 대한 방대한 데이터를 효과적으로 분석하여 이를 통한 사업성 증대를 뫼하고 있다 대부분의 은행의 고객 데이터 분석에서는 고객의 거래 정보나 인구통계 정보 분석이 대부분을 차지한다. (중략)
동일한 시험조건에서 반복시험으로부터 얻어진 실험 데이터는 이론적으로 동일한 값을 가져야 한다. 그러나 실제 데이터 결과는 다양한 환경 요소들에 의해 발생하는 오차와 불확실성을 가지게 되어 시험 값이 변동량을 가진다. 이는 정확한 실험 데이터를 얻는데 제한사항이 된다. 본 연구에서는 확률통계 방법을 이용하여 불확실성을 가진 입력변수의 유효범위를 결정하는 알고리즘을 제안하였다. 또한 실제 현장에서 사용되는 볼트 체결 마찰계수 데이터를 이용하여 제안된 알고리즘을 적용하여 불확실성을 내재한 입력변수의 유효범위를 산출하고 이에 대한 신뢰성 평가를 하였다.
2010년부터 최근 5년간 해양안전심판원의 충돌사고 통계분석 결과에 따르면 98%가 인적과실이 원인이 될 정도로 경계소홀 등 해기사에 의한 운항과실이 해양사고의 대부분을 차지하고 있으나 그동안 외국뿐만 아니라 국내에서도 이에 대한 연구는 극히 미흡한 실정이다. 본 연구는 항해중인 선박이 타 선박과 6가지 유형(Head-on, $045^{\circ}$, $090^{\circ}$, $135^{\circ}$, Overtaking, Overtaken)의 다른 방위각으로 조우 상황시 양 선박의 거리가 가까워지면서 거리별 항해당직사관인 해기사가 느끼는 스트레스(주관적 위험도)를 실제 항해중인 선박에 승선하여 실험하였고 획득한 데이터를 통계적으로 분석 및 처리하였다. 데이터를 곡선적합(Curve fitting) 적용 결과 6가지 조우각도별 거리에 따른 연속 데이터 획득이 가능 하였고 인적과실의 주요 원인 중의 하나인 타 선박 조우 상황시 해기사가 느끼는 스트레스 일반화 모델을 위한 기초 식을 제안하였다. 이러한 결과는 향후 해기사의 인적과실을 줄여 해양사고 예방을 위한 기초 자료로 활용 할 수 있을 것이다.
미래를 예측하는 기법은 통계에 기반을 둔 것과 딥러닝에 기반을 둔 기술로 분류할 수 있다. 그중 통계에 기반을 둔 것이 간단하고 정확성이 높아서 많이 사용된다. 하지만 실무자들은 많은 분석기법의 올바른 사용에 어려움이 많다. 이번 연구에서는 마케팅에 관련된 데이터에 다항로지스틱회귀, 의사결정나무, 랜덤포레스트, 서포트벡터머신, 베이지안 추론을 적용하여 예측의 정확성을 비교하였다. 동일한 마케팅 데이터를 대상으로 하였고, R을 활용하여 분석을 진행하였다. 마케팅 분야의 데이터 특성을 반영한 다양한 기법의 예측 결과가 실무자들에게 좋은 참고가 될 것으로 생각한다.
본 논문은 객체 검출 알고리즘을 위한 통계치 적응적인 선형 회귀 기반 객체 크기 예측 방법을 제안한다. 기존에 제안된 딥 러닝 기반 객체 검출 알고리즘 중 YOLOv2 및 YOLOv3은 객체의 크기를 예측하기 위하여 네트워크의 마지막 계층에 통계치 적응적인 지수 회귀 모델을 사용한다. 하지만, 지수 회귀 모델은 역전파 과정에서 지수 함수의 특성상 매우 큰 미분값을 네트워크의 파라미터로 전파시킬 수 있는 문제점이 있다. 따라서 본 논문에서는 미분 값의 발산 문제를 해결하기 위하여 객체 크기 예측을 위한 통계치 적응적인 선형 회귀 모델을 제안한다. 제안하는 통계치 적응적인 선형 회귀 모델은 딥러닝 네트워크의 마지막 계층에 사용되며, 학습 데이터셋에 존재하는 객체들의 크기에 대한 통계치를 이용하여 객체의 크기를 예측한다. 제안하는 방법의 성능 평가를 위하여 YOLOv3 tiny를 기반으로 제안하는 방법을 적용하여 재설계한 네트워크의 검출 성능과 YOLOv3 tiny의 검출 성능을 비교하였으며, 성능 비교를 위한 데이터셋으로는 UFPR-ALPR 데이터셋을 사용하였다. 실험을 통해 제안하는 방법의 우수성을 검증하였다.
오늘날 데이터는 p-차원의 공간에서 점들로써 표현되는 전통적인 형태를 벗어나 시그널(signal), 함수, 이미지(image), 모양(shape) 등과 같은 다양한 형태의 자료들이 데이터로써 고려되고 분석되고있다. 그러한 종류의 새로운 종류의 데이터 중 하나로 심볼릭 데이터(symbolic data)를 고려할 수 있다. 심볼릭 데이터는 구간(interval), 히스토그램(histogram), 목록(list), 통계표, 분포, 또는 모형 등과 같은 다양한 형태들을 가질 수 있다. 지금까지의 연구가 주로 심볼릭 데이터의 각각의 형태별 자료를 고려했다면, 본 연구에서는 이를 확장하여 수집된 히스토그램과 멀티모달의 혼합된 형태로 이루어진 자료에 대한 계층 분할적 군집분석방법을 소개하고 이를 업종별 산업재해자료의 분석을 위해 이용한다.
다양한 형태의 데이터로부터 의사 결정에 유용한 정보 및 지식을 발견하려는 일련의 데이터분석 및 모형 선정과정을 데이터 마이닝(Data Mining)이라고 할 수 있다. 데이터 마이닝의 적용 예로는 신규고객에 대한 신용평가, 고객이탈방지 등과 같은 분야에서 발생하는 스코링 문제를 들 수 있는데 신용평가에서는 신용이 나쁠 가능성을 스코어로 나타내고 스코어가 높은 고객을 대상으로 특별관리를 할 수 있을 것이며 고객이탈방지에서는 이탈가능성을 스코어로 나타내고 스코어가 높은 고객을 대상으로 이탈 방지 캠페인을 벌일 수 있을 것이다. 본 논문에서는 스코링 문제를 사후확률에 대한 모형화 문제로 파악하였다. 폴리클라스를 스코링 문제에 적용하는 방법을 소개한 후 이를 독일 신용 데이터, 국내 모 PC통신회사 데이터 및 국내 모 이동통신 데이터에 적용하였다. 스코링의 성능은 이득률을 이용하여 평가하고자 하는데 나무 모형에 비하여 폴리클라스 방법이 우수함을 확인하였다.
본 연구에서는 과학기술분야 연구자의 연구데이터 공유에 영향을 미치는 요인간의 인과관계를 분석하기 위해 과학기술분야 연구자 198명을 대상으로 설문조사를 실시하였다. 외부변수로는 인지성, 의사소통의 개방성, 신뢰성, 협력성을 설정하였으며, 연구기관이 연구데이터 공유를 위한 보상체계를 매개변수로 선정하였다. 종속변수로는 연구데이터 공유를 선정하여 이들간에 요인들이 어떻게 영향을 미치는지에 대해 구조방정식을 적용하여 분석하였다. 연구결과 인지성만이 보상체계를 통하여 연구데이터 공유에 긍정적인 영향을 미치는 것으로 나타났으며 다른 요인들은 연구데이터 공유를 위한 보상체계에 통계적으로 유의미하게 영향을 미치지 않는 것으로 나타났다. 또한 보상체계는 연구데이터 공유에 통계적으로 유의미하게 영향을 미치는 것으로 나타났다.
최근 이용통계는 온라인 정보제공자로부터 폭넓게 제공받고 있다. 그러나 그 통계는 여전히 일치된 데이터 수집기로 이용할 수 없으며, 개별 정보제공자들의 관리 비용도 높은 상황이다. 표준화된 이용통계 수집을 주도하는 SUSHI는 정보제공사에서 제공한 이용통계를 도서관에 전자적으로 저장하기 위해 COUNTER 프로젝트를 실행할 자동화된 질의 응답 프로토콜을 개발하고 있다. SUSHI는 도서관들이 COUNTER 프로젝트의 통계를 활용함으로써 관리상의 업무부하 절감과 함께 의사결정을 지원할 것이다. 전자자원에 대한 이용통계의 기록과 교환에 있어서 출판사들이 COUNTER의 실무 규칙을 준수함으로써 최초로 저널과 데이터베이스들에 적용된다. 업체들은 COUNTER의 표준을 이용하여 엑셀이나 CSV 파일로 도서관 고객에게 제공할 수 있다. 그 결과 다양한 학술출판사와 정보서비스 기관에서 생성되고 있는 이용통계 데이터를 일관성, 신뢰성, 용이성을 확보할 수 있게 되는 것이다. 이에 본 연구에서는, 해외 전자저널 공동구매 컨소시엄인 KESLI의 전자저널 이용통계 수집 및 처리 절차를 분석하여, SUSHI에 기반한 전자저널 이용통계 수집 모델을 제안하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.