An Enterprise Architecture (EA) Framework is a tool which supports implementation of the Enterprise architecture that is used to enhance the interoperability of the IT components. In this paper, we propose a framework named as ENAE (ENterprise Architecture Framework) which combines enterprise architecture unit (AU), reference model, and association relationship between domain model. Architecture Unit is defined as a minimum set of a business process and its associated components such as application system and technical components. An EA can be designed and implemented by the aggregating the related AUs including association relationship between Architecture Units. Because UML model has limitations to describe business domain semantics because it is designed for general purpose, we adapt the DSM (Domain Specific Modeling) concept. We describe association relationship between Architecture Units designed by Domain Specific Modeling through Topic Map. Session 2 describes related works about Enterprise Architecture frameworks, Domain Specific Modeling, and Topic Map, while Session 3 explains components of the ENAF. Finally Session 4 shows the case study for implementation of the new Framework called ENAF.
The Journal of the Convergence on Culture Technology
/
v.7
no.2
/
pp.367-375
/
2021
This study aimed to identify the knowledge structure of researches on 'untact' and derived implications for directions for the studies using text mining. The study included network analysis and topic modelling of keywords and abstracts from 171 thesis published until October 2020. Centrality analysis showed that 'untact' studies had been focused on service, usage, consumption, technology and online. From the topic modelling, 6 topics such as 'COVID-19 and socio-technological change', 'needs and utilization of education contents', 'technology and service for user convenience', 'product marketing and sales', 'service design of the company', 'influence factors of usage and consumption' were extracted. Keywords that connect each topic were technology, service, usage, consumption, needs and factor. Exploratory analysis of 'untact' researches using text mining provides useful results for development of 'untact' studies.
The Journal of the Convergence on Culture Technology
/
v.9
no.2
/
pp.451-457
/
2023
This study aims to identify the domestic research trends on nursing leadership and provide basic data that can be used for nursing leadership-related research and intervention development in Korea. To extract topics related to nursing leadership from 335 papers published in domestic academic journals from January 2012 to December 2021, the topic modeling technique was used. Keywords were extracted from abstracts, and literature searches were conducted in five domestic databases including DBpia, KISS, RISS, KM base, and Nanet. The study found that academic papers on nursing leadership have been steadily increasing, with self-leadership, self-efficacy, and education being identified as major topics. In addition, since self-leadership was the most frequently appearing keyword among the types of leadership, the study concluded that research on various forms of leadership should be more actively conducted. These research results are expected to contribute to enhancing understanding of nursing leadership in Korea. This study provides a new perspective on understanding the research trends on nursing leadership in Korea and analyzed the knowledge structure of domestic nursing leadership research, which is meaningful.
In this study, the last 10 years of news data on fine dust was collected and 80 topics are selected through LDA analysis. As a result, weather-related information made up the main words for the topic, and we can see that fine dust becomes a big issue below 10 degrees Celsius. The frequency of exposure to the media and the maximum concentration of fine dust are correlated with positive. Topics related to fine dust reduction measures and the government's comprehensive measures over the past decade, topics related to products such as air purifiers related to fine dust, topics related to policies protecting vulnerable people from fine dust, and topics on fine dust reduction through R&D were found to be major topics. Measures against fine dust as a social issue can be seen to be closely related to the government's policy.
The food truck business, which involves selling various types of food from mobile vehicles, has gained significant popularity in urban centers and at events. These food trucks have rapidly expanded due to their relatively low initial investment and high flexibility, attracting customers with unique menus and personalized services. However, as competition increases, the need to manage service quality to boost customer satisfaction and encourage repeat visits has become more critical. Despite this growing importance, there has been limited empirical research on the topic. This study aims to analyze customer experiences with food truck services to gain strategic insights for improving service quality. By applying structural topic modeling to customer review data, the study identified 50 key topics. The process included a comprehensive evaluation of model diagnostics and interpretability to determine the optimal number of topics, ultimately selecting the most relevant ones related to service experiences. The impact of these identified topics on overall customer satisfaction was empirically tested using regression analysis. The results showed that aspects such as "Food Taste," "Friendly Staff," and "Positive Emotion" had a positive influence on customer satisfaction, whereas "Delayed Service," "Negative Emotion," and "Beverage Service" had a negative impact. Based on this analysis, the study proposes concrete methods for food truck operators to systematically analyze customer feedback and use it to drive service improvements and innovation. This research highlights the importance of data-driven decision-making in small business environments like food trucks and contributes to expanding the application of topic modeling in the service industry.
Journal of The Korean Association of Information Education
/
v.26
no.5
/
pp.439-448
/
2022
This study aims to search for education-related datasets provided by public data portals and examine what data types are constructed through classification using topic modeling methods. Regarding the data of the public data portal, 3,072 cases of file data in the education field were collected based on the classification system. Text mining analysis was performed using the LDA-based topic modeling method with stopword processing and data pre-processing for each dataset. Program information and student-supporting notifications were usually provided in the pre-classified dataset for education from the data portal. On the other hand, the characteristics of educational programs and supporting information for the disabled, parents, the elderly, and children through the perspective of lifelong education were generally indicated in the dataset collected by searching for education. The results of data analysis through this study show that providing sufficient educational information through the public data portal would be better to help the students' data science-based decision-making and problem-solving skills.
As part of an effort to derive measures to prevent school violence, which is continuously emphasized in the school field, this study tried to examine the topic that has recently become an issue related to school violence from the perspective of data science. In particular, it was attempted to crawl posts related to school violence using online SNS data and examine the characteristics of each type by using the topic modeling method. As a result of arranging the keywords for each topic derived from the topic modeling analysis by type, it was possible to divide the contents into three main categories: prevention of school violence, punishment of perpetrators, and measures to be taken. First, as the contents of school violence prevention activities, it is the contents of the role of specialized organizations for the prevention of school violence. Second, it was derived from the contents of measures and procedures for school violence. Third, it was possible to examine the contents of recent issues of school violence. In future research, it is necessary to conduct research that is used to solve the social problems facing based on data-based prediction.
Local issues that occur in cities typically garner great attention from the public. While local governments strive to resolve these issues, it is often difficult to effectively eliminate them all, which leads to complaints. In tackling these issues, it is imperative for local governments to use big data to identify the nature of complaints, and proactively provide solutions. This study applies the LDA topic modeling technique to research and analyze trends and patterns in complaints filed online. To this end, 9,625 cases of online complaints submitted to the city of Busan from 2015 to 2017 were analyzed, and 20 topics were identified. From these topics, key topics were singled out, and through analysis of quarterly weighting trends, four "hot" topics(Bus stops, Taxi drivers, Praises, and Administrative handling) and four "cold" topics(CCTV installation, Bus routes, Park facilities including parking, and Festivities issues) were highlighted. The study conducted big data analysis for the identification of trends and patterns in civil affairs and makes an academic impact by encouraging follow-up research. Moreover, the text mining technique used for complaint analysis can be used for other projects requiring big data processing.
The study is to investigate research trends and knowledge structures in the Smart Farm field. To achieve the research purpose, keywords and the relationship among keywords were analyzed targeting 104 Korean academic journals related to the Smart Farm in KCI(Korea Citation Index), and topics were analyzed using the LDA Topic Modeling technique. As a result of the analysis, the main keywords in the Korean Smart Farm-related research field were 'environment', 'system', 'use', 'technology', 'cultivation', etc. The results of Degree, Betweenness, and Eigenvector Centrality were presented. There were 7 topics, such as 'Introduction analysis of Smart Farm', 'Eco-friendly Smart Farm and economic efficiency of Smart Farm', 'Smart Farm platform design', 'Smart Farm production optimization', 'Smart Farm ecosystem', 'Smart Farm system implementation', and 'Government policy for Smart Farm' in the results of Topic Modeling. This study will be expected to serve as basic data for policy development necessary to advance Korean Smart Farm research in the future by examining research trends related to Korean Smart Farm.
This study examined the results obtained using the text mining method for research trends related to learning counseling among adolescents and suggested subsequent research directions. The top 1 and 2 of Korean youth concerns are learning and career paths. Topic modeling analysis was conducted using text mining techniques that can minimize researcher's subjectivity and prejudice for 201 academic papers above KCI registration candidates through RISS with keywords such as Learning Counseling and Academic Counseling. Learning counseling topic results showed counseling experience [topic 1], group counseling research [topic 2], parent counseling [topic 3], and learning technology program development [topic 4]. Research related to learning counseling is developing counseling for emotional stability. Group counseling, parent counseling, and learning technology programs. Learning counseling to solve adolescents' concerns is expected to continue research on integrated support through psychological emotion, parent counseling, and collaboration with learning technology experts.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.