• Title/Summary/Keyword: 토출

Search Result 447, Processing Time 0.019 seconds

Analysis of Groundwater Use and Discharge in Water Curtain Cultivation Areas: Case Study of the Cheongweon and Chungju Areas (청원-충주지역 수막재배용 지하수 사용량 및 배출량 분석)

  • Moon, Sang-Ho;Ha, Kyoochul;Kim, Yongcheol;Yoon, Pilsun
    • The Journal of Engineering Geology
    • /
    • v.22 no.4
    • /
    • pp.387-398
    • /
    • 2012
  • Korean agricultural areas that employ water curtain cultivation (WCC) have recently suffered extensive groundwater shortages due to an increase in the number of facilities. The primary focus of this study is to measure the daily groundwater use and discharge rates in the Cheongweon and Chungju pilot areas, while the second focus is to estimate the total amount of groundwater used in WCC areas nationwide in Korea. Taking into consideration several factors, including motor type, outflow abilities of wells, records of daily minimum temperatures below $0^{\circ}C$, and the number of running wells according to weather variations, we estimated that $53,138m^3/ha$ of groundwater had been used in the 4-hectare Cheongweon pilot area during the winter period of late 2011 through early 2012. On a prorated areal basis, we can calculate that the total groundwater used nationwide was 0.57 billion $m^3$ in WCC areas of $10,746m^2$. This value is equivalent to 33.7% of the total agricultural groundwater use (1.69 billion $m^3$) in Korea. During 9-22 February 2012, the daily water discharge rate in the 4-ha Cheongweon pilot area ranged from 2,079 to $2,628m^3$, averaging $2,341m^3$. Combining this value with meteorological records for 94 days with a daily minimum temperature below $0^{\circ}C$ results in an estimated groundwater volume of $54,990m^3/ha$ for the pilot area during the 2011-2012 winter period. The total amount of groundwater used nationwide in WCC areas would then be 0.59 billion $m^3$, equivalent to 34.9% of the total agricultural groundwater use in Korea. In the Chungju area, the groundwater discharge rate was estimated to be less than 805 $m^3$/ha. This value, combined with weather data for 108 days with a daily minimum temperature below $0^{\circ}C$ in this area, can be applied to infer that the total groundwater volume used in WCC areas nationwide is no more than 55% of the total agricultural groundwater use in Korea.

Effect of Various Mixing Ratio of Non-glutinous and Glutinous Rice on Physical and Rheological Properties of Extrudate (멥쌀과 찹쌀의 혼합비율별 압출성형물의 물리적 성질 및 유동특성)

  • Kum, Jun-Seok;Kwon, Sang-Oh;Lee, Hyun-Yu;Lee, Sang-Hyo;Jung, Jin-Hyub;Kim, Jun-Pyong
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.442-447
    • /
    • 1994
  • Effect of different mixing ratio of non-glutinous and glutinous rice on physical and rheological properties of extrudate prepared in a single screw extruder were examined. The extrusion conditions in term of screw speeds, moisture content and die temperature were 258 rpm, 18% and $120^{\circ}C$, respectively. The resisdence time distribution of the most of materials were within 30 second and small portion of them went up to 80 second. The expansion ratio was the highest value (2.93) for 70% of glutinous rice in the mixture, while the lowest value for 100% of non-glutinous rice. Breaking strength was in the range between 1,051g and 1,117g for $10{\sim}20%$ of glutinous rice in the mixture, while the lowest value (737g) for 80%r of glutinous rice. As the amount of glutinous rice increased, L and a values were increased and b value was decreased. The uncooked cold paste viscosity had 400 B.U. for 100% non-glutinous rice , while no peak for the 100% glutinous rice. As the amount of glutinous rice increased up to 100%, the water absorption index (WAI) was decreased, while water solubility index (WSI) was increased. The rheological properties of extrudate were accounted by the law of Oswald. The flow behavior index of extrudate was less than 1.0, which showed pseudoplastic behavior. Yield stress was the highest value for 20% of glutinous rice in the mixture and the lowest value for $80{\sim}100%$ of glutinous; rice. Number of air cell was between 128 and 159 for $80{\sim}100%$ of glutinous rice in the mixture, while $81{\sim}84%$ for $0{\sim}20%$ of glutinous rice. The degree of shapefact was increased more when the mixtures of glutinous and non-glutinous rice was used than when glutinous or non-glutinous rice was only used.

  • PDF

Technology for Improving the Uniformity of the Environment in the Oyster Mushroom Cultivation House by using Multi-layered Shelves (느타리버섯 균상재배사의 환경균일성 향상을 위한 기술 개발)

  • Lee, Sunghyoun;Yu, Byeongkee;Kim, Hyuckjoo;Yun, Namkyu;Jung, Jongcheon
    • Journal of Bio-Environment Control
    • /
    • v.24 no.2
    • /
    • pp.128-133
    • /
    • 2015
  • Mushrooms can grow in nature when adequate temperature and humidity are maintained, but such condition can be satisfied for only a short period of time on an annual continuum. Therefore, it can be deemed that a majority of the distributed mushrooms in the current market are produced in an artificially manipulated environment. This study was conducted to resolve the problem of the Oyster mushroom cultivation house's internal temperature and humidity imbalance, where the Oyster mushrooms are cultivated in a multi-layered shelves. The air circulation fans were installed to improve the air uniformity of the Oyster mushroom cultivation house by using multi-layered shelves. During the experiment, the ambient temperature and the ambient relative humidity ranged from $5.2^{\circ}C$ to $20.4^{\circ}C$ and 40% to 100% respectively. Due to the change of the outdoor temperature, the internal temperature of the Oyster mushroom cultivation house also changed, ranging from $13.3^{\circ}C$ to $18.4^{\circ}C$, but the temperature gap between the different internal location of the facility during the conforming recorded time only ranged from $0.2^{\circ}C$ to $1.3^{\circ}C$, being significantly stable. The internal relative humidity, ranging from 82% to 96%, also changed due to the change of the outdoor temperature. Nevertheless, the relative humidity gap between the different internal location during the conforming recorded time only ranged from 2% to 7%. Furthermore, the research staff were able to maintain the concentration of $CO_2$ from 575ppm to 731ppm(below 1,000ppm was the goal) indicating the possibility of an even management of the internal environment by installing the air circulation fan.

Long-term Climate Change Research Facility for Trees: CO2-Enriched Open Top Chamber System (수목의 장기 기후변화 연구시설: CO2 폭로용 상부 개방형 온실)

  • Lee, Jae-Cheon;Kim, Du-Hyun;Kim, Gil-Nam;Kim, Pan-Gi;Han, Sim-Hee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.1
    • /
    • pp.19-27
    • /
    • 2012
  • The open-top chamber (OTC) system is designed for long term studies on the climate change impact on the major tree species and their community in Korea. In Korea Forest Research Institute (KFRI), the modified OTC system has been operating since September 2009. The OTC facility consists of six decagon chambers (10 meters in diameter by 7 meters high) with controlled gas concentration. In each chamber, a series of vertical vent pipes are installed to disperse carbon dioxide or normal air into the center of the chamber. The OTC is equipped with remote controlled computer system in order to maintain a stable and elevated concentration of carbon dioxide in the chamber throughout the experimental period. The experiment consisted of 4 treatments: two elevated $CO_2$ levels ($1.4{\times}$ and $1.8{\times}$ ambient $CO_2$) and two controls (inside and outdoors of the OTC). Average operational rate was the lowest (94.2%) in June 2010 but increased to 98% in July 2010 and was 100% during January to December 2011. In 2010~2011, $CO_2$ concentrations inside the OTCs reached the target programmed values, and have been maintained stable in 2011. In 2011, $CO_2$ concentrations of 106%, 100% and 94% of target values has been recorded in control OTC, $1.4{\times}$ $CO_2$-enriched OTC and $1.8{\times}$ $CO_2$-enriched OTC, respectively. With all OTC chambers, the difference between outside and inside temperatures was the highest ($1.2{\sim}2.0^{\circ}C$) at 10 am to 2 pm. Temperature difference between six OTC chambers was not detected. The relative humidity inside and outside the chambers was the same, with minor variations (0~1%). The system required the highest amount of $CO_2$ for operation in June, and consumed 11.33 and 17.04 ton in June 2010 and 2011, respectively.

A Study on Infiltration Process and Physicochemical Influence in the Unsaturated and the Saturated Zone of the Bottom Ashes from Thermal Power Plant (화력발전소 배출 바닥재의 불포화대와 포화대 침투과정과 물리화학적 영향에 대한 연구)

  • Park, Byeong-Hak;Joun, Won-Tak;Ha, Seoung-Wook;Kim, Yongcheol;Choi, Hanna
    • Economic and Environmental Geology
    • /
    • v.55 no.1
    • /
    • pp.97-109
    • /
    • 2022
  • This study focused on the physicochemical effects of bottom ash dissolved precipitation on the soil and groundwater environment. The iced column and percolation experiments showed that most of the bottom ash particles were drained as the ash-dissolved solution, while the charcoal powder was filtered through the soil. Ion species of Al, As, Cu, Cd, Cr, Pb, Fe, Mn, Ca, K, Si, F, NO3, SO4 were analyzed from the eluates collected during the 24 h column test. In the charcoal powder eluates, a high concentration of K was detected at the beginning of the reaction, but it decreased with time. The concentrations of Al and Ca were observed to increase with time, although they existed in trace amount. In the bottom ash eluates, the concentrations of Ca and SO4 decreased by 30 mg·L-1 and 67 mg·L-1, respectively, over 24 h. It is regarded that the infiltration patterns of the bottom ash and biochar in the unsaturated zone were different owing to their particle sizes and solvent properties. It is expected that a significant amount of the bottom ash will mix with the precipitation and percolate below the water table, especially in the case of thin and highly permeable unsaturated zone. The biochar was filtered through the unsaturated zone. The biochar did not dissolve in the groundwater, although it reached the saturation zone. For these reasons, it is considered that the direct contamination by the bottom ash and biochar are unlikely to occur.

Fertigation Techniques Using Fertilizers with Peristaltic Hose Pump for Hydroponics (연동펌프를 이용한 비료염 공급 관비재배기술 연구)

  • Kim, D.E.;Lee, G.I.;Kim, H.H.;Woo, Y.H.;Lee, W.Y.;Kang, I.C.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.17 no.1
    • /
    • pp.57-71
    • /
    • 2015
  • This study was conducted to develop the fertigation system with a peristaltic hose pump and brushless DC motor. The fertigation system was consisted of sensor, main controller, motor control unit, peristaltic pump, water supply pump, control panel, and filter. The peristaltic pump discharges liquid by squeezing the tube with rollers. Rollers attached to the external circumference of the rotor compresses the flexible tube. The fluid is contained within a flexible tube fitted inside a circular pump casing. The developed fertigation system has no mixing tank but instead injects directly a concentrated nutrient solution into a water supply pipe. The revolution speed of the peristaltic pump is controlled by PWM (Pulse width modulation) method. When the revolution speed of the peristaltic pump was 300rpm, the flow rate of the 3.2, 4.8, 6.3mm diameter tube was 202, 530, 857mL/min, respectively. As increasing revolution speed, the flow rate of the peristaltic pump linearly increased. As the inner diameter of a tube larger, a slope of graph is more steep. Flow rate of three roller was more than that of four roller. Flow rate of a norprene tube with good restoring force was more than that of a pharmed tube. As EC sensor probe was installed in direct piping in comparison with bypass piping showed good performance. After starting the system, it took 16~17 seconds to stabilize EC. The maximum value of EC was 1.44~1.7dS/m at a setting value of 1.4dS/m. The developed fertigation system showed ±0.06dS/m deviation from the setting value of EC. In field test, Cucumber plants generally showed good growth. From these findings, this fertigation system can be appropriately suitable for fertigation culture for crops.

Hydrochemistry and Noble Gas Origin of Various Hot Spring Waters from the Eastern area in South Korea (동해안지역 온천유형별 수리화학적 특성 및 영족기체 기원)

  • Jeong, Chan-Ho;Nagao, Keisuke;Kim, Kyu-Han;Choi, Hun-Kong;Sumino, Hirochika;Park, Ji-Sun;Park, Chung-Hwa;Lee, Jong-Ig;Hur, Soon-Do
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.1
    • /
    • pp.1-12
    • /
    • 2008
  • The purpose of this study is to characterize the hydrogeochemical characteristics of hot spring waters and to interpret the source of noble gases and the geochemical environment of the hot spring waters distributed along the eastern area of the Korean peninsula. For this purpose, We carried out the chemical, stable isotopic and noble gas isotopic analyses for eleven hot spring water and fourteen hot spring gas samples collected from six hot spring sites. The hot spring waters except the Osaek hot spring water show the pH range of 7.0 to 9.1. However, the Osaek $CO_2$-rich hot spring water shows a weak acid of pH 5.7. The temperature of hot spring waters in the study area ranges from $25.7^{\circ}C$ to $68.3^{\circ}C$. Electrical conductivity of hot spring waters varies widely from 202 to $7,130{\mu}S/cm$. High electrical conductivity (av., $3,890{\mu}S/sm$) by high Na and Cl contents of the Haeundae and the Dongrae hot spring waters indicates that the hot spring waters were mixed with seawater in the subsurface thermal system. The type of hot springs in the viewpoint of dissolved components can be grouped into three types: (1) alkaline Na-$HCO_3$ type including sulfur gas of the Osaek, Baekam, Dukgu and Chuksan hot springs, and (2) saline Na-Cl type of the Haeundae and Dongrae hot springs, and (3) weak acid $CO_2$-rich Na-$HCO_3$ type of Osaek hot spring. Tritium ratios of the Haeundae and the Dongrae hot springs indicate different residence time in their aquifers of older water of $0.0{\sim}0.3$ TU and younger water of $5.9{\sim}8.8$ TU. The ${\delta}^{18}O$ and ${\delta}D$ values of hot spring waters indicate that they originate from the meteoric water, and that the values also reflect a latitude effect according to their locations. $^3He/^4He$ ratios of the hot spring waters except Osaek $CO_2$-rich hot spring water range from $0.1{\times}10^{-6}$ to $1.1{\times}10^{-6}$ which are plotted above the mixing line between air and crustal components. It means that the He gas in hot spring waters was originated mainly from atmosphere and crust sources, and partly from mantle sources. The Osaek $CO_2$-rich hot spring water shows $3.3{\times}10^{-6}$ in $^3He/^4He$ ratio that is 2.4 times higher than those of atmosphere. It provides clearly a helium source from the deep mantle. $^{40}Ar/^{36}Ar$ ratios of hot spring water are in the range of an atmosphere source.