• Title/Summary/Keyword: 토출음

검색결과 7건 처리시간 0.018초

공회전 시 저소음화를 위한 자동차 배기계 위치 결정 (Layout of Engine Exhaust System for Low-Noise Idling Condition)

  • 최충영;이정권;김태균;장승호;김회전
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 추계학술대회 논문집
    • /
    • pp.242-243
    • /
    • 2009
  • 배기토출음은 공회전시 발생하는 소음에 큰 영향을 끼친다. 연비를 높이기 위하여 공회전시 RPM을 낮추면 엔진 점화 주파수가 낮아지며, 이 경우 배기계 위치에 따른 음향학적 공명 주파수와 일치하면 배기 토출음의 크기가 증가한다. 따라서 본 연구에서는 공회전시 배기토출음을 줄이기 위해 소음기의 위치와 각 배기관들의 길이를 최적화하였다. 최적화 결과로써 3 가지 배기계 위치를 얻을 수 있었고, 실제 실험과의 비교를 통하여 최적화된 배기계 위치가 그렇지 않은 배기계 위치에 비하여 소음 저감량이 높은 것을 확인하였다.

  • PDF

토출소음 저감을 위한 차량 흡기시스템 레이아웃 설계 (Layout design of the vehicle intake system for reducing the radiated noise)

  • 김회전;이정권
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.443-446
    • /
    • 2006
  • For the satisfaction of the high engine performance and the low radiated sound pressure simultaneously, the duct length in the vehicle intake/exhaust system should be tuned carefully in the design and development stage of a vehicle. This study was concerned about the effects of intake duct length in clean and dirty sides on the radiated sound emitted from an inlet. An index derived from the existing prediction model of radiated sound pressure was employed to determine which duct was more influential to the radiated sound. Comparing the experimental and predicted results, we found that the change of dirty-side duct length caused a larger change than that in the clean side in the radiated sound level from a tested intake system.

  • PDF

승용 디젤엔진 소음 기여인자 추출에 관한 연구(I) (The Study on the Noise Contributing Factors Extraction of the Passenger Diesel Engine(I))

  • 김성훈;권용준;고필규;정연욱;임옥택
    • 한국자동차공학회논문집
    • /
    • 제19권3호
    • /
    • pp.90-98
    • /
    • 2011
  • Noises from diesel engine are the major issues for noise pollution as well as affect customers' purchasing needs to vehicles powered by diesel engine. This study investigates to screen-out main factors that contribute to noises from diesel engine using VGT 2000cc engine developed recently. Changes of fuel temperature, intake temperature and the presence of three way catalyst don't affect the 'Engine Radiation Noise' and the solely three way catalyst influence on the 'Tail Pipe Noise'. Especially, there are no effects of the presence of three way catalyst on torque, which is main subject that should be considered in secondary study.

자동차 배기계의 배기압 감응형 제어 머플러 개발에 관한 연구 (II) - 배기압 감응형 제어 머플러의 소음특성과 스프링 상수 - 최초 열림 압력의 관계 - (The Development of Muffler with Controller Sensing Exhaust-gas Pressure in Automotive Exhaust System (II))

  • 이해철;이민호;이준서;차경옥
    • 한국자동차공학회논문집
    • /
    • 제11권3호
    • /
    • pp.167-176
    • /
    • 2003
  • This study is focused on the development of a new muffler. A control valve installed in the exhaust system is operated by torsion springs, and its open angle is controlled automatically corresponding to the engine operating conditions. A control valve and a control muffler sensing exhaust-gas pressure are made f3r developing a new muffler. The experiments were done using an exhaust system simulator having the same pulsation wave frequency and similar pulsation propagation characteristics of a real exhaust system. The purpose of this study is to develope a new muffler system which has improved noise reduction quality and less power loss than conventional mufflers and electronic-control mufflers. Finally the characteristic of noise compared with conventional muffler and muffler sensing exhuast-gas pressure.

STIFFENER FLANGE 축소에 따른 배기 토출음 저감 (Effect of Exhaust Orifice Noise Depending on Stiffener Flange)

  • 신양수;한돈수;이관순;박주상;신규철;이종범
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.373-378
    • /
    • 2000
  • Recently, it has been important to develop light, silent and less-vibrational automobile. In this study, in order to investigate the characteristics of the noise caused by the main silencer components-stiffener flange, inlet pipe and exhaust pipe etc., computational flow analysis, vibration and noise experiments were performed about the variable heights of the stiffener flange. Flow structure in the mainsilencer which calculated by CFD solver-IDEAS ESC, and frequency response function results of impact hammer test was proposed and it was found good agreement between former results and the exhaust orifice noise measured.

  • PDF

직교류 홴의 설계인자가 성능 및 소음 특성에 미치는 영향에 대한 실험적 연구 (An Experimental Study of the Influences of Basic Design Parameters on the Performance and the Noise Characteristics of Cross-flow Fans)

  • 구형모
    • 소음진동
    • /
    • 제10권3호
    • /
    • pp.430-436
    • /
    • 2000
  • The cross-flow fans have been widely used to constitute the air moving systems in many air-ventilating and air-conditioning units. The cross-flow fan system has many design parameters which have crucial influence on the performance and the noise characteristics of the units. As a result there are many difficulties in the design stage of the system and the general design guide has not been sufficiently established yet. This study presents the experimental results of the parametric investigation of some chosen design parameters which are directly related to the shape of the stabilizer the profile of the scroll casing and the diffusion angle of the flow exit. The results are expressed in terms of the fan performance and the specific sound pressure level characteristics. Some parameters have been found to have crucial effects on the system performance/noise characteristics and should be considered with care in the design stage.

  • PDF

차량 배기토출음 음질분석에 대한 연구 (A Study on Sound Quality of Exhaust Tail-pipe Noise of Vehicle)

  • 정인성;김홍기;신동호;임희곤;김상호
    • 한국소음진동공학회논문집
    • /
    • 제25권2호
    • /
    • pp.90-100
    • /
    • 2015
  • Recently, creating a signature sound for a brand has become more important in the automotive industry. It is important to remember that the people inside a vehicle are not the only one, who assess the signature sound, exhaust sound has become a more important factor. Most research has used psycho-acoustic parameter to objectively measure the aesthetic qualities of exhaust sound. However, these results do not parallel the results from subjective analysis. Therefore, this research focused on developing a method for objective quantification to assess the aesthetic qualities of exhaust sound in order to help develop a more appealing signature sound. To do so, the actual exhaust sound was synthesized and subjectively assessed at varied frequencies samples of 30 individuals employed at sejong R&D center. The results were analyzed using the science of harmony scale.