• Title/Summary/Keyword: 토질 지수

Search Result 52, Processing Time 0.022 seconds

Settlement behavior of clay deposits due to reclamation in YongSAN River estuary (영산강 하구지역 점토의 침하특성 고찰)

  • Kim, Jae-Hyun;Kim, Dong-Beom;Lee, Hyun-Wung;Park, Sung-Su
    • 기술발표회
    • /
    • s.2006
    • /
    • pp.270-276
    • /
    • 2006
  • 영산강 하구지역은 현재 신도시개발이 한창 진행되고 있으며, 연약한 해성퇴적층이 15~25cm로 존재하고 있다. 연약지반 개량설계는 불교란시료를 채취하고 각종 실내시험을 통하여 지반의 토질정수를 결정한다. 본 고찰은 압밀관련 지반정수인 선행압밀하중(Pc), 압축지수(Cc), 재압축지수(Cr)를 재해석하기 위해 침하계측 결과를 이용 실내시험의 압밀 곡선과 비교 분석하였다.

  • PDF

A Study on Correlation between Soil Properties and Parameters of Soft Clay in Honam Coastal Region (호남해안지역 연약점토의 토질특성과 제 토질정수와의 상관성에 관한 연구)

  • Kim Jong-Ryeol;Choo Youn-Woo;Kang Hee-Bog;Kim Gyo-Jun;Lee Sang-Hun
    • The Journal of Engineering Geology
    • /
    • v.14 no.4 s.41
    • /
    • pp.371-379
    • /
    • 2004
  • Soil investigation data at 7 different locations around Honam costal region were analyzed and experimental correlations between soil properties and parameters of soft clay were presented. Most soils were classified as CL and CH by the Unified Soil Classification System and were unstable structurally because the water contents were generally greater than the liquid limits. The compression index has good correlations with water content, liquid limit and initial void ratio. The trend of these correlations were similar to the Skempton equation Cc = 0.009(LL -10) and other studies for Korean soft clays but the constants were small different. The slope of these correlations for Honam costal region were slightly greater than those for Kyunggi costal region and Kyungnam costal region. The correlation coefficient (R) between the liquid limit and the plastic index is 0.93. It is seen that not only the water content and the liquid limit but also the water content and the initial void ratio are correlate, therefore the experimental equations were presented for the practical purpose.

Effect of Duration of Confinement and Its Affecting Factors on the Low-Amplitude Shear Modulus ($G_{max}$) of Soils (토질 최대전단탄성계수($G_{max}$)에 미치는 시간지속효과 및 그 영향요소에 관한 연구)

  • 박덕근
    • The Journal of Engineering Geology
    • /
    • v.9 no.2
    • /
    • pp.135-145
    • /
    • 1999
  • Dynamic Shear modulus (G) is one of the imfortant dynamic soil properties to estimate the response of soil to dynamic loading. Problems in engineering geo1ogy practice the require the knowledge of soil properties subjected to dynamic loadings include soil-structure interaction during earthquakes, bomb blasts, construction operations, and mining. Although the dynamic shear modulus (G) is a time-dependent property, G change with time is often neglected. In this study, the effect of duration of confinement and its affecting factors (previous stress and strain, particle size and sustained pressure, and plasticity index) on the low-amplitude shear modulus ($G_{max}$) of soils are reviewed, and some empirical correlations based on mean particle diameter and plasticity index are proposed.

  • PDF

Review of Assessing Soil Quality Criteria for Environmentally-Sound Agricultural Practics and Future Use (환경적으로 안전한 농업과 미래용도를 위한 토질 기준 평가 검토)

  • Doug Young Chung
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.2
    • /
    • pp.127-145
    • /
    • 1998
  • Unlike water or air quality standards that have been established by legislation using potential human health impact as the primary criterion, soil quality depends on the soils primary function and its relevant environmental factors, which is much more site- and soil specific. A properly characterized soil quality assessment system should serve as an indicator of the soil capacity to produce safe and nutritious food, to enhance human and animal health, and to overcome degrative processes. For our proposed example, a high quality soil with regard to maintaining an adequate soil productivity as a food production resources must accommodate soil and water properties, food chain, sustainability and utilization, environment, and profitability, that (i) facilitate water transfer and absorption, (ii) sustain plant growth, (iii) resist physical degradation of soil, (iv) produce a safe food resources, (v) cost-effective agricultural management. Possible soil quality indicators are identified at several levels within the framework for each of these functions. Each indicator is assigned a priority or weight that reflects its relative importance using a multi-objective approach based on principles of systems to be considered. To do this, individual scoring system is differentiated by the several levels from low to very high category or point scoring ranging from 0 to 10, And then weights are multiplied and products are summed to provide an overall soil quality rating based on several physical and chemical indicators. Tlne framework and procedure in developing the soil quality assessment are determined by using information collected from an alternative and conventional farm practices in the regions. The use of an expanded framework for assessing effects of other processes, management practices, or policy issues on soil quality is also considered. To develop one possible form for a soil quality index, we should permit coupling the soil characteristics with assessment system based on soil properties and incoming and resident chemicals. The purpose of this paper is to discuss approaches to defining and assessing soil quality and to suggest the factors to be considered.

  • PDF

Relationship Between Physical Properties and Compression Index for Marine Clay (해성점토의 물리적 특성과 압축지수의 상관성)

  • 김동후;김기웅;백영식
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.371-378
    • /
    • 2003
  • The compression index of clay distributed in the west and south coast of the Korean Peninsula had been studied. Compression index was obtained from the conventional consolidation test, and was conducted accordingly to obtain the field virgin compression curve by means of Schmertmann's graphical correction. To examine a correlation closely between physical properties of soils($e_o$, LL, w) and compression index(Cc), linen. and non-linear regression analysis were employed based on the data collected from tests. The conclusions are as follows. The compression index obtained by means of Schmereann's graphical correction is about 1.16 times for the value of original oedometer test curve for U/D samples. Non-liner regression curve was preferable to establish a correlation equation rather than linear regression curve. All derived equations so far achieved have been summarized and given. However, linear equation is better for practical use so that part by part simplified linear equations were also suggested alternatively together with their own non-linear regression curve.

A Study on the Relationship between the Physical Properties of Soil and the Compression Index of Soft Clay in Gyungnam Coastal Region (경남해안지역 연약점토의 토질특성과 압축지수와의 상관성에 관한 연구)

  • 장정욱;최성민;박춘식
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.4
    • /
    • pp.282-289
    • /
    • 2001
  • This study analyzed the relationship between the physical properties of soil and the compression index of the soft clay in Gyungnam coastal region. Tests of physical and mechanical properties of soil have been carried out under the undisturbed condition at 82 Gimhae, 18 Jinhae and 27 Geojespecimens. The result showed that Terzaghi & Peck's empirical equation of the compression index were not applicable. The compression index of soft clay in Gyungnam coastal region was correlated with the water contents, the liquid limit and the initial void ratio. Among these, the initial void ratio showed the highest correlation with the compression index of soft clay in Gyungnam coastal region and the relationship is shown in the following. (1) The compression index of soft clay in Gyungnam coastal region is represented as follows: $C_c=0.74(e_o-0.7$ (2) The relationship between compression index and the swelling index in Gyungnam coastal region is represented as follows: $C_s=(1/8-1/15)C_c$.

  • PDF

A Probabilistic Study on the Engineering Characteristics of Soil in Korea by the Unified Soil Classification (통일분류(統一分類)에 의한 우리나라 토질(土質) 공학적(工學的) 특성(特性)에 관한 확률론적(確率論的) 연구(硏究))

  • Chung, Chul Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.3
    • /
    • pp.115-123
    • /
    • 1989
  • This paper probabilisticly analyses the variance of the soil parameters on kinds of soil by conducting statistical analysis through the Unified Soil Classification System. Data used are the result of soil test which the Korea National Housing Corporation conducted in 176 sites of 74 cities throughout the country during the past 13 years from 1974 to 1986. In this paper, soil parameters such as natural water contents, specific gravity of soil particle, Atterberg limits, N-values, unconfined compression strength, compression index and shear strength parameter etc., is analysed. The result of the analysis is as follows. 1) The variance in physical properties of the soil is, when compared with coefficient of variation which is statistical variable, comparatively small. 2) The shear strength parameter is proved to be about 40% and compression index is about 32%. 3) The variance in specific gravity is 0.87-2.49% in granular soil and 0.91~5.03% in cohesive soil respectively. So, the degree of the variance is very small.

  • PDF

A Characteristic Study of Compression Index(Cc) of the Deep Seabed Soft-Clay (대심도 해저 연약점토의 압축지수(Cc) 특성에 관한 연구)

  • Hong, Soon-Taek;Lee, Seung-Ho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.5
    • /
    • pp.21-28
    • /
    • 2011
  • It is important to obtain detailed physical and mechanical properties of the soil for effective and economical plans and constructions of the structures located on deep seabed soft clay layer. This study is to find out the engineering properties of the seabed soft clay such as water content, initial void ratio, liquid and plastic limits, the compression index, etc., to make correlations between soil parameters, and to compare and analyze the findings with that from the previous researchers. Finally a representative correlation among the soil parameters was determined.

Target Reliability Indices of Static Design Methods for Driven Steel Pipe Piles in Korea (국내 항타강관말뚝 설계법의 목표 신뢰도지수)

  • Kwak, Kiseok;Huh, Jungwon;Kim, Kyung Jun;Park, Jae Hyun;Lee, Juhyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1C
    • /
    • pp.19-29
    • /
    • 2008
  • As a part of study to develop LRFD (Load and Resistance Factor Design) codes for foundation structures in Korea, reliability analyses for driven steel pipe piles are performed and the target reliability indices are selected carefully. The 58 data sets of static load tests and soil property tests conducted in the whole domestic area were collected and analyzed to determine the representative bearing capacities of the piles. The static bearing capacity formula and the Meyerhof method using N values are applied to calculate the expected design bearing capacity of the piles. The resistance bias factors were evaluated for the two static design methods by comparing the representative bearing capacities with the design values. Reliability analysis was performed by two types of advanced methods: First Order Reliability Method (FORM), and Monte Carlo Simulation (MCS) method using resistance bias factor statistics. The static bearing capacity formula exhibited relatively small variation, whereas the Meyerhof method showed relatively high inherent conservatism in the resistance bias factors. Reliability indices for safety factors in the range of 3 to 5 were evaluated respectively as 1.50~2.89 and 1.61~2.72 for both of the static bearing capacity formula and the Meyerhof method. The target reliability indices are selected as 2.0 and 2.33 for group pile case and 2.5 for single pile case, based on the reliability level of the current design practice and considering redundancy of pile group, acceptable risk level, construction quality control, and significance of individual structure.

Development of the Linear Regression Analysis Model to Estimate the Shear Strength of Soils (흙의 전단강도 산정을 위한 선형회귀분석모델 개발)

  • Lee, Moon-Se;Ryu, Je-Cheon;Kim, Kyeong-Su
    • The Journal of Engineering Geology
    • /
    • v.19 no.2
    • /
    • pp.177-189
    • /
    • 2009
  • The shear strength has been managed as an important factor in soil mechanics. The shear strength estimation model was developed to evaluate the shear strength using only a few soil properties by the linear regression analysis model which is one of the statistical methods. The shear strength is divided into two part; one is the internal friction angle (${\phi}$) and the other is the cohesion (c). Therefore, some valid soil factors among the results of soil tests are selected through the correlation analysis using SPSS and then the model are formulated by the linear regression analysis based on the relationship between factors. Also, the developed model is compared with the result of direct shear test to prove the rationality of model. As the results of analysis about relationship between soil properties and shear strength, the internal friction angle is highly influenced by the void ratio and the dry unit weight and the cohesion is mainly influenced by the void ratio, the dry unit weight and the plastic index. Meanwhile, the shear strength estimated by the developed model is similar with that of the direct shear test. Therefore, the developed model may be used to estimate the shear strength of soils in the same condition of study area.