• Title/Summary/Keyword: 토양 방사능

Search Result 125, Processing Time 0.022 seconds

A Study on the Evolution of 3,4-DCA and TCAB in Some Selected Soils(Part II) -Degradation of $^{14}C-3,4-DCA\;and\;^{14}C-TCAB$- (수종토양중(數種土壤中)에서 3,4-DCA 및 TCAB의 변화(變化)에 관(關)한 연구(硏究)(제2보(劑二報)) -$^{14}C-3,4-DCA$$^{14}C-TCAB$ 의 분해(分解)-)

  • Lee, Jae-Koo;Fournier, J.C.
    • Applied Biological Chemistry
    • /
    • v.21 no.2
    • /
    • pp.71-80
    • /
    • 1978
  • In an attempt to elucidate the fate of 3,4-DCA and TCAB in various French soils, uniformly $^{14}C-ring-labeled$ 3,4-DCA and TCAB mere utilized and the following results obtained. 1) The rate of breakdown of $^{14}C-3,4-DCA$ into $^{14}CO_2$ was relatively higher in the early stage than that in the later stage. In 6 months of incubation in alkaline soil (pH 7.9), the rate was as high as 6.5% at dose 1 (1.5 ppm) and as low as 1.92% at dose 2(94 ppm), whereas in organic acid soil (pH 5.5) the rate was 4.91% at dose 1 and 4.24% at dose 2, respectively, without making any great difference between the two levels. 2) At dose 1, 47.70% of the initial radioactivity of $^{14}C-3,4-DCA$ was bound to soil in organic acid soil and 29.49% bound in alkaline soil, whereas at dose 2, 38.40% in organic acid soil and 20.30% in alkaline soil, respectively. 3) The amount of formation of $^{14}C-TCAB$ from $^{14}C-3,4-DCA$ seems to depend largely on the concentration of 3,4-DCA applied rather than on soil types. At dose 2, the amount was 50% of the total radioactivity extracted in organic acid soil and 30% in alkaline soil, corresponding to 1.8% and 1.4% of the initial radioactivity applied to soil, respectively. Cis-TCAB also seemed to be formed at dose 2 in both soils. Meanwhile, at dose 1, even though $^{14}C-TCAB$ was detected in trace on tlc and glc in both soils, the amount does not exceed 2 to 3% of the radioactivity extracted, corresponding to 0.05 to 0.1% of the initial radioactivity. 4) The rate of breakdown of $^{14}C-TCAB$ into $^{14}CO_2$ ranged from 0.05 to 0.20% in all the four soils. Most of the applied $^{14}C-TCAB$ remained intact after 3 months, not producing any detectable metabolites. 5) The fact that much more $^{14}C-TCAB$ was adsorbed to alkaline soil than to the other soils strongly indicates that in alkaline condition trans-isomer was converted tocisisomer which has the higher adsorption affinity than the former.

  • PDF

Establishment Aerobic Soil Metabolism System Using [14C]Butachlor ([14C]Butachlor를 이용한 호기성 토양대사 시험법 확립)

  • Kim, Ju-Hye;Kim, Jong-Hwan;Kim, Dae-Wook;Lee, Bong-Jae;Kim, Chan Sub;Ihm, Yangbin;Seo, Jong-Su
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.4
    • /
    • pp.258-268
    • /
    • 2014
  • The test method of aerobic transformation in soil has established based on international test guideline (OECD TG 307). And then, the case study was conducted with [$^{14}C$]butachlor. Butachlor is commonly used herbicide in Korea. [$^{14}C$]Butachlor was treatrd $6.83mgKg^{-1}$ in loamy soil. The treated soil was incubated in flow-through system for 60 days. The mass balance of applied radioactivity (AR) ranged from 91.1 to 95.5% and from 93.0% to 97.7% for non-sterile and sterile soils, respectively. In non-sterile soil, the concentration of [$^{14}C$]butachlor was declined from 94.4% AR at 0 day to 8.4% AR at 60 days after treatment. 2-Chloro-2',6'-diethylacetanilide was the major degradation product detected in soil extract. The calculated $DT_{50}$ and $DT_{90}$ of butachlor were 10.4 days and 34.6 days, respectively. $^{14}CO_2$ and non-extractable soil residue were increased up to 3.5% and 43.5% AR at 60 DAT. There is no significant decrease of the [$^{14}C$]butachlor through the incubation period in sterile soil.

Evaluation of Radiation effective dose by Naturally Radionuclides in the Soil of Busan (부산지역 토양 내 천연방사성핵종 분석 및 유효선량율 평가)

  • Kim, Jung-Hoon;Kim, Chang-Soo;Lim, Chang-Seon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3658-3666
    • /
    • 2014
  • The presence of $^{238}U$, $^{232}Th$ and $^{40}K$, which are naturally residing radionuclides, in the ordinary soil of Busan, the 2nd largest city in Korea, was anlayzed and the residents' radiation exposure to ordinary soil was evaluated. Regarding the measurement methods, to conduct a detailed analysis of the naturally residing radionuclides in the soil of Busan, this study divided the 16 administrative districts into a lattice structure with 3 spots, and collected a total of 48 soil samples (July 2012 and April 2013). ICP-MS was used to analyze the concentration of the radioactivity of $^{238}U$ and $^{232}Th$ in the soil, and a HpGe detector, a gamma ray detector, was used to analyze the radioactivity of $^{40}K$. The measurement values of this study were compared with the concentration of radioactivity of East Asian regions. The concentration of $^{238}U$ nuclides in Korea was lower than the mean, whereas the concentration of $^{232}Th$ and $^{40}K$ nuclides was higher than the mean. The higher mean concentrations of $^{232}Th$ and $^{40}K$ than the mean were attributed to the many granite areas that contain a great deal of naturally occurring radionuclides.

Behaviour of the soil residues of the herbicide quinclorac in the micro-ecosystem (pot) (Micro-ecosystem(pot)중 제초제 quinclorac 토양잔류물의 행적)

  • Ahn, Ki-Chang;Kyung, Kee-Sung;Lee, Jae-Koo
    • The Korean Journal of Pesticide Science
    • /
    • v.2 no.3
    • /
    • pp.96-106
    • /
    • 1998
  • Rice plants were grown for 42 days in the specially made micro-ecosystem(pot) containing two different soils treated with fresh and 60-day-aged residues of [$^{14}C$]quinclorac, respectively, to elucidate the behaviour of the herbicide quinclorac residues in the soils. Amounts of $^{14}CO_{2}$ evolved from two soils treated with different residues with and without vegetation were all less than 2.2% of the total $^{14}C$, indicating that there was little microbial degradation of quinclorac in soil. $^{14}C$-Radioactivity absorbed and translocated into rice plants from soil A and B containing fresh quinclorac residues was 8.4 and 24.2%, respectively, of the originally applied $^{14}C$, while 5.5 and 17.7%, in aged residue soils. These results indicate that larger amounts of $^{14}C$ were absorbed by rice plants from soil B with less organic matter and clay than soil A, and the uptake of [$^{14}C$]quinclorac and its degradation products decreased with aging in soil. After 42 days of rice growing, 84.5 and 61.8% of the $^{14}C$ applied freshly to soil A and B, respectively, remained in soil, whereas, in the case of aged soils, 86.3 and 67.7% of the $^{14}C$ applied did. Meanwhile, without vegetation, more than 98.3% of the $^{14}C$ applied, in both fresh and aged residues, remained in soil, suggesting that quinclorac was relatively persistent chemically and microbiologically. Most of the non-extractable soil-bound residues of [$^{14}C$]quinclorac were incorporated into the organic matter and largely distributed in the fulvic acid portion.

  • PDF

황산을 이용한 동전기적방법에 의한 방사능오염토양 복원 연구

  • 오원진;김계남
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.2
    • /
    • pp.145-153
    • /
    • 2004
  • H$_2$SO$_4$ and citric acid were used as additives for the electrokinetic remediation experiment to increase removal efficiency of $^{137}$ Cs and $^{60}$ Co from the radioactive soil waste stored for more than 10 years. The average effluent velocity discharged from the elctrokinectic remediation experimental column was 2.0${\times}$10$^{-2}$ cm/min and the discharged soil wastewater volume for 10 days is 3.6 pore volume of the column. 97% of $^{60}$ Co in the column was decontaminated for 10 days of operation, while only 54% of $^{137}$ Cs was decontaminated. These results are considered that the absorption equilibrium coefficient of $^{137}$ Cs is higher than that of $^{60}$ Co. The predicted values of the residual concentration by the proposed mathematical model were well coincided with the experimental results within the experimental error range

  • PDF

Analysis of Radioactivity in Coal Fly Ash (비산석탄회의 방사능 농도 분석)

  • Shin, Hyun-Sang;Lee, Myung-Ho;Kim, Mi-Kyung;Park, Doo-Wun;Lee, Chang-Woo;Rhee, Dong-Seok
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.4
    • /
    • pp.187-193
    • /
    • 1999
  • The specific radioactivity concentrations in the coal fly ash obtained from heat producing stations in Korea were analyzed and its radiological hazard for reuse in construction purpose was evaluated. The concentrations of uranium isotopes in the real fly ash measured by TBP solvent extraction method and $\alpha$-spectrometer were found to be about 116.1 Bq $kg^{-1}$ for $^{238}U$, 5.01 Bq $kg^{-1}$ for $^{235}U$, and 121.2 Bq $kg^{-1}$ for $^{234}U$, respectively. The activity ratio of $^{234}U/^{238}U$, in the coal fly ash was in $1.04\;{\pm}\;0.03$, which is similar to that of uncontaminated Korean soil in natural conditions (1.14). The specific radioactivities of $^{226}Ra,\;^{232}Th,\;and\;^{40}K$ in the coal fly ash were also determined using $\gamma$-spectrometer with a HPGe detector The results showed that $^{226}Ra,\;^{232}Th,\;and\;^{40}K$ in the coal fly ash were in concentrations of $101.7{\sim}113.9$, $39.5{\sim}54.2\;and\;315.0{\sim}990.6$ Bq $kg^{-1}$, respectively. With the specific radioactivities obtained from $\gamma$-spectrometric measurements of the coal fly ash, its radiological hazard for reuse was evaluated. The result showed that the radioactivity of the coal fly ash was in permissible level.

  • PDF

Occurrence and Distribution of Heavy Metals and Natural Radioisotopes Recovered at the Abandoned Coal Mine Tailings (폐석탄광미에서 유래한 중금속과 자연방사능의 분포 및 발생 특성)

  • Chung, Doug-Young;Cho, Il-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.3
    • /
    • pp.142-149
    • /
    • 2005
  • This investigation was conducted to observe and verify the distribution and their occurrence between heavy metals and natural isotopes in the soil collected at the 40 locations from the abandoned coal mine areas to the sediment of Chungra reservoir located at Chungra-Myon Boryung city, Chungnam. The results of the investigation showed that there were distinctive differences of the contents for the heavy metals and the natural isotopes between the area influenced by the coal mine tailing and the non-influenced area. The amounts of the heavy metals were Pb ($1.32-29.96mg\;kg^{-1}$), Cd ($0.15-0.76mg\;kg^{-1}$), Cu ($0.28-49.67mg\;kg^{-1}$), and Cr ($1.31-13.18mg\;kg^{-1}$) while the averages were Cu ($12.43mg\;kg^{-1}$), Pb ($10.44mg\;kg^{-1}$), Cr ($4.87mg\;kg^{-1}$), Cd ($0.51mg\;kg^{-1}$). The standard deviations of Pb and Cu were significantly higher compared to other heavy metals investigated in this experiment. And the amounts of the natural isotopes measured from the dried soil samples were Pb-210 ($4.87dpm\;g^{-1}$), Th-234 ($3.52dpm\;g^{-1}$), Ra-226 ($2.88dpm\;g^{-1}$), Ra-228 ($7.30dpm\;g^{-1}$), K-40 ($58.06dpm\;g^{-1}$) for all locations whereas Cs-137 which is fall-out by nuclear experiment from atmosphere was rarely found. From these results we found that the amounts of natural isotopes such as Pb-210 (4.41%), Th-234 (3.60%), and Ra-226 (2.09%) were less than those found in the coal-tailing while the proportion of Ra-228 (266%) and K-40 (308%) were significantly higher than those in the coal-tailing. Also occurrence of correlations between the amounts of the heavy metals and the natural isotopes was proportionally related.

Uptake of the Residues of the Herbicide Bentazon in Soil by Soybean and Radish (토양중(土壤中) 제초제(除草劑) Bentazon 잔류물(殘留物)의 콩과 무우에 의한 흡수(吸收))

  • Lee, Jae-Koo;Cheon, Sam-Yeong;Kyung, Kee-Sung
    • Korean Journal of Environmental Agriculture
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 1988
  • In order to clarify how much of the residues of Bentazon could be taken up by crops, soybean and radish were grown for 28 days in soils containing freshly treated $^{14}C-Bentazon$ and non-extractable soil-hound residues of $^{14}C-Bentazon.$ The results obtained are summarized as follows. 1. $^{14}CO_2$ evolution from $^{14}C$-Bentazon during the 6-month pre-incubation in soil was 14.79% relative to the applied radioactivity. 2. Mineralization of ^$^{14}C$-Bentazon in soil to $^{14}CO_2$ during 28 days of crop growing was much higher in the freshly treated soil than in the bound soil, and much higher in radish than in soybean. 3. The amounts of $^{14}C-Bentazon$ and its metabolites absorbed by soybean and radish were 45.41 and 21.48%, respectively, in freshly treated soil, whereas those were 3.92 and 1.23% in bound soil, respectively. The translocation ratios of radioactivity .from the root to the shoot were much higher in radish than in soybean, remarkably. 4. The uptake ratios of the freshly treated $^{14}C-Bentazon$ to the bound $^{14}C-Bentazon$ by soybean and radish were 12 : 1 and 17 : 1, respectively. 5. It was well verified that the presence of crops enhanced the mineralization to $^{14}CO_2$ and the transformation to polar metabolites of Bentazon.

  • PDF

Behaviour of the soil residues of the bipyridylium herbicide, [$^{14}C$]paraquat in the micro-ecosystem (Micro-ecosystem중 bipyridylium 제초제 paraquat 토양잔류물의 행적)

  • Kwon, Jeong-Wook;Lee, Jae-Koo
    • The Korean Journal of Pesticide Science
    • /
    • v.3 no.1
    • /
    • pp.66-77
    • /
    • 1999
  • In order to elucidate the fate of the residues of the bipyridylium herbicide paraquat in soil, maize plants were grown for 4 weeks on the specially-made pots filled with two different types of soils containing fresh and 6-week-aged residues of [$^{14}C$]paraquat, respectively. The mineralization of [$^{14}C$]paraquat to $^{14}CO_{2}$ during the aging period and the cultivation period of maize plants amounted to $0.13{\sim}0.18%$ and $0.02{\sim}0.17%$, respectively, of the original $^{14}C$ activities. At harvest the roots and shoots contained less than 0.1% and 0.01% of the originally applied $^{14}C$ activities, respectively, whereas the $^{14}C$ activities remaining in soil were more than 97% in both soils. The water extractability of the soil where maize plants were grown for 4 weeks was less than 1.2% of the original $^{14}C$ activities. Most of the non-extractable soil-bound residues of [$^{14}C$]paraquat were incorporated into the humin fraction. Soil pHs during the aging of soil B and after cultivation in all treatments increased. The distribution of the $^{14}C$ activities in subcellular particles of the maize plant roots was the highest in the residue fraction(incompletely homogenized tissue). Dehydrogenase activities increased after vegetation, regardless of soil aging.

  • PDF