• Title/Summary/Keyword: 토양조건

Search Result 2,365, Processing Time 0.031 seconds

Performance Evaluation of the Field Scale Sequential Washing Process for the Remediation of Arsenic-Contaminated Soils (Field 규모 연속 토양세척공정을 이용한 비소 오염토양 정화 효율 평가)

  • Choi Sang Il;Kim Kang Hong;Han Sang-Keun
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.6
    • /
    • pp.68-74
    • /
    • 2005
  • This study was carried out to evaluate the feasibility of field-scale sequential soil washing process for remediation on Kyongsangnamdo D mine soils which was heavily contaminated by arsonic. Arsenic concentration of untreated soils was $321\pm32mg/kg$. By applying the basic operating condition which was proposed from several pilot-scale experiments, arsenic concentration of treated soils was reduced 2.04 mg/kg ($99\%$ removal efficiency). We optimized the basic operating condition (mainly on washing solution concentration, cut-off size, and mixing ratio) to improve efficiently and economically the field-scale sequential soil washing process. The resulting optimized conditions were that solution concentration is 0.2M HCl, 1.0M HCl, 1.0M NaOH, that the cut-off size is 0.15mm (seive $\sharp$100), and that the mixing ratio is 1 3. Also, the optimized pH value for soil washing effluent treatment was 6 (33 ppb), in which the precipitation disruption caused by supersaturation of the floe did not occur. Results of TCLP tests showed that arsenic concentration from the washed gravels was 1.043 mg/L, that from soils ND (not detected), and that from filter cakes 0.066 mg/L. Also, the water content as a percentage of dewatered sludges was low $(48\%)$ and so the dewatered sludges can be disposed by landfilling. Through these results, we can concluded that tile field-scale sequential soil washing process developed in this study is adopted for remediation of arsenic-contaminated soils.

Sequential Washing Techniques for Arsenic-Contaminated Soils near the Abandoned Iron-Mine (폐 철광산 주변 비소로 오염된 토양에 대한 연속 세척기법의 적용)

  • Hwang Jung-Sung;Choi Sang-il;Han Sang-Geun
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.1
    • /
    • pp.58-64
    • /
    • 2005
  • Several tests were conducted to determine the optimum operational conditions of soil washing techniques for floe-forming arsenic-contaminated soils, collected from D abandoned Iron-mine in Korea. The optimum cut-off size was 0.15 mm $(sieve\;\#100)$, about $94\%$ of the mass of soils. Both sodium hydroxide and hydrochloric acid were effective to remove arsenic and the optimum mixing ratio (soil [g] : washing solution [mL]) was 1:5 for both washing agents. Arsenic concentrations, determined by KST Methods, for the dried floe solids obtained from flocculation at pH 5-6 were $990\~1,086\;mg/kg$ dry solids, which were higher concentrations than at the other pH values. Therefore, batch tests for sequential washings with or without removing floc were conducted to find the enhancement of washing efficiencies. After removing floe with 0.2 M HCl, sequential washings of 1 M HCl followed by 1 M NaOH showed the best results (15 mg/kg dry soil). The arsenic concentrations of washing effluent from each washing step were about $2\~3\;mg/L$. However, when these acidic and basic effluents were mixed together, arsenic concentration was decreased to be less than $50\;{\mu}g/L$, due to the pH condition of coagulation followed by precipitation for arsenic removal.

Studies on the Salt Movement of Upland Soil in Reclaimed Tidal Land (간척지(干拓地) 밭토양(土壤)의 염류이동(鹽類移動)에 관(關)한 연구)

  • Lee, Jong-Sik;Kim, Jong-Gu;Yoo, Chul-Hyun;Kang, Jong-Gook;Kim, Ho-Jung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.24 no.1
    • /
    • pp.28-34
    • /
    • 1991
  • This study was carried out to investigate the salt movement in upland soils in reclaimed region (Kye-Hwa Do). The results obtained were summarized as follows : 1. The cation content in ground water increased during time course. but in the case of land-surface water the content was variable, and $K^+$ was lower than that of $Na^+$ and $M^{+2}$. At the L. S. P(Low salinity plot) under rainproof condition, the salinity was directly proportional to soil water content, but at the H. S. P (High salinity plot) the tendency was no reversed. 3. In condition of rainproof, the amount of available phosphorous was higher at the H. S. P than at the L. S. P. 4. Positive correlation was obtained between the soil water content and available phosphorous content at the rainfall plot, but there was no significance at the surface soil of the rainproof plot. 5. SAR (Sodium adsorption ratio) and anion ($Cl^-$, $SO_4{^{2-}}$) contents in soil were repressed in the order of black vinyl>white vinyl>rice straw>control.

  • PDF

Studies on the pear Abnormal Leaf Spot Disease 4. Influence of Temperature and Soil Moisture (배나무잎 이상반점증상에 관한 연구 4. 온도 및 토양수분의 영향)

  • 남기웅;김충회
    • Korean Journal Plant Pathology
    • /
    • v.12 no.2
    • /
    • pp.209-213
    • /
    • 1996
  • 배나무잎 이상반점증상의 발병환경 조건을 조사하고자 실험한 결과 주간 23$^{\circ}C$, 야간 18$^{\circ}C$ 온도조건에서 병징발현이 가장 심하였고 이보다 높은 온도인 28/23$^{\circ}C$와 낮은 온도인 18/13$^{\circ}C$에서는 발병이 아주 적었다. 배나무잎에 봉지를 피복하면 발병이 전혀 없거나 극히 저조하였다. 이것은 봉지내의 온도가 최고 46.8$^{\circ}C$까지 올라가 고온에 의하여 발병이 억제된 것으로 생각된다. 이병주 토양과 건전주 토양의 화학성을 조사한 결과 이병주 토양에서는 건전주 토양보다 유효인산량이 많게 나타났다. 토양수분이 많거나 적었을 때는 병징발현이 다소 늦어지기는 하나 최종 조사시 발병정도는 큰 차이를 나타내지 않았다.

  • PDF

Effect of Depth of Tuber Burial, Soil Temperature, and Soil Moisture on Tuber Sprouting of Eleocharis Kuroguwai Ohwi (올방개 괴경(塊莖)의 맹아(萌芽)에 미치는 매몰심(埋沒深), 토양온도(土壤溫度) 및 수분조건(水分條件)의 영향(影響))

  • Chun, J.C.;Shin, H.S.
    • Korean Journal of Weed Science
    • /
    • v.14 no.1
    • /
    • pp.49-55
    • /
    • 1994
  • A study was conducted to determine the effect of depth of burial, soil temperature and/or moisture on tuber sprouting of E, kuroguwai. Tubers were evenly distributed in the upper 30cm of soil. Tuber weight increased as depth of tuber formed increased. No dormancy in newly formed tubers was found, whereas mature tubers were dormant. When new tubers were subjected both to continuous $5^{\circ}C$ and to gradual decreasing temperatures regimes ranged from 20 to $1^{\circ}C$ for 30 days, the tubers remained non-dormant. Viability of tubers was reduced when buried at 5cm depth in dry and moist soil conditions, but no reduction was obtained when buried at 25cm depth, regardless of soil moisture conditions employed. Percent sprouting of tubers buried at 25cm depth increased with increasing duration of burial in three soil moisture conditions studied, wherease in dry and moist conditions percent sprouting of tubers buried at 25cm depth increased by 60-day burial and thereafter decreased. In submerged condition, tuber sprouting was greater when buried at 5cm depth than when buried at 25cm depth, and increased as duration of burial increased at the both depths.

  • PDF

Effects of Soil Environmental Conditions on the Decomposition Rate of Insecticide Fenitrothion in Flooded Soils (담수토양중(湛水土壤中)에 있어서 살충제(殺蟲劑) fenitrothion의 분해속도(分解速度)에 미치는 각종(各種) 토양환경조건(土壤環境條件)의 영향)

  • Moon, Young-Hee
    • Korean Journal of Environmental Agriculture
    • /
    • v.9 no.1
    • /
    • pp.1-8
    • /
    • 1990
  • The effects of soil environmental conditions on the degradation rates of fenitrothion(O-O-dimethyl O-4-nitro-m-tolyl phosphorothioate) in soils under flooded conditions were examined in the laboratory. Fenitrothion was degraded rapidly and the half life period was within 4 days. Furthermore the degradation was mere rapid under flooded conditions than under upland conditions. The decomposition rate was varied with soils and soil temperatures. Fenitrothion degraded more slowly at 30ppm than at l0ppm. Repeated applications of fenitrothion in soils accelerated the degradation rates. The degradation remarkably increased with amendment of rice straw. However, degradation rates ,were virtually unaffected by the addition of the mixed-fertilizer, the fungicide IBP and the herbicide butachlor. The population of fenitrothion-degrading microbes, which were counted by MPN method, always corresponded with the degradation rates in the soils.

  • PDF

Effect of Biofilm Formation on Soil Sorbed Naphthalene Degradation (Biofilm 생성이 토양흡착 나프탈렌 분해에 미치는 영향)

  • Li, Guang-Chun;Chung, Seon-Yong;Park, Jeong-Hun
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.6
    • /
    • pp.45-52
    • /
    • 2009
  • Naphthalene-degrading bacteria Pseudomonas aeruginosa CZ6 isolated from contaminated soil can adhere to crystal naphthalene and produce extracellular polymeric substance. LB, YM and MSM medium were used as culture mediums to investigate the formation of biofilm. Biofilm was developed the most in LB medium by Pseudomonas aeruginosa CZ6. In the culture, strain CZ6 growth was rarely affected by naphthalene concentration. Optimal culture condition was $30^{\circ}C$ and pH 7 at 0.10% substrate and 150 rpm shaking. The effect of culture medium on naphthalene degradation in the two soil slurry system was evaluated. The initial degradation rate of naphthalene was highest in the MSM medium of soil slurry. However, the sorbed naphthalene was rapidly degraded at the LB medium when naphthalene availability in liquid was limited. The results of this study suggest that biofilm formation and extracellular polymeric substance production increased bioavailability of soil sorbed naphthalene.

하천주변 사면에서의 인공강우와 자연강우를 이용한 토양침식실험

  • 홍세선;이창범;양동윤;이진영;김주용
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.269-272
    • /
    • 2003
  • 하천에 토사가 유입되는 가장 중요한 요인은 주변 지역의 사면에서의 토양의 침식작용이며 이러한 현상은 다양한 요인들에 의해 영향 (사면경사, 사면식생, 토양 입도, 사면거칠기 등)을 받지만 주로 물, 특히 강우에 의해 크게 좌우된다. 그러므로 정확한 강의 양과 강우 강도, 이에 따른 토양의 침식량을 정량화하는 것이 중요하다. 이번 연구에서는 이러한 다양한 조건에 따라 토양의 침식이 어떠한 특성을 갖고 발생하는지를 파악하고자 하였다. (중략)

  • PDF

Spore Germination of Some Plant Pathogenic Fungi under Different Soil Conditions in Relation to Soil Fungistasis (토양조건에 따른 몇가지 식물병원균의 포자발아와 토양정균 현상)

  • Lee Min Woong;Choi Hae Jung;Shim Jae Ouk
    • Korean Journal Plant Pathology
    • /
    • v.1 no.3
    • /
    • pp.157-164
    • /
    • 1985
  • Some interactions in various soil conditions, numbers of microbial populations, root rot disease development and rates of spore germiation in three different location of soils were investigated. The calcium and magnesium contents were higher in replanted fields of ginseng (Panax ginseng) at Goesan. Potassium contents were high in replanted field at Poonggi and textural class of the soils was silt loam except for silt clay loam in first cultured field of ginseng at Goesan. For the germination process of Fusarium solani, F. moniliforme, F. oxysporum, and Alternaria panax, the percentage germination of fungal spores was high in double distilled water and Pfeffer's solution as media, whereas the lower rate of germination of spores was observed in soil extracts. Numbers of bacteria were high in replanted field soil at Gumsan, and propagules of fungi in replanted fields at Gumsan and Poonggi were higher than other soils, but higher numbers of actinomycetes were found in the first cultured field of ginseng at Goesan and Poonggi. Fungistasis was induced by higher microbial populations present in soil that was initiated when amended with garlic stalk, crushed bean and ginseng leaves. On the other hand, there was no fungistasis in soil amended with wheat and barley straw, and this tendency was a little difference on the soil sample.

  • PDF

Land Suitability Assessment by Combining Classification Results by Climate and Soil Information Using the Most Limiting Characteristic Method in the Republic of Korea (기후 및 토양 정보에서 최대저해인자법을 이용한 재배적지 구분의 통합에 관한 연구)

  • Kim, Hojung;Shim, Kyomoon;Hyun, Byungkeun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.3
    • /
    • pp.127-134
    • /
    • 2016
  • Land suitability assessment for apples and pears was conducted with soil and climate information in South Korea. In doing so, we intended to preserve land and increase the productivity by providing valuable information regarding where more suitable areas for apples or pears are located. We used soil classification driven by soil environmental information system developed by National Institute of Agricultural Science, RDA, and also used climate classification in digital agro-climate map database for which is made by National Institute of Horticultural and Herbal Science. We combined both soil and climate classification results using a most-limiting characteristic method. The combined results showed very similar patterns with the results by classification based on soil information. Such results seem to come from the fact that the classification results by soil relatively lower than those by climate information. The results by soil classification seem to be too downgraded and checking if the final classification ranges in soil are reasonably made is strongly required. Although the most limiting characteristic method had been used widely in land suitability assessment, adapting the method based on results by soil and climate can be influenced by one downgraded factor. Therefore, alternative ways should be carefully considered for increasing the accuracy.