• Title/Summary/Keyword: 토양점착력

Search Result 20, Processing Time 0.028 seconds

Evaluation of Slope Stability of Taebaeksan National Park using Detailed Soil Map (정밀토양도를 이용한 태백산국립공원의 사면안정성 평가)

  • Kim, Young-Hwan;Jun, Byong-Hee;Jun, Kye-Won
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.2
    • /
    • pp.65-72
    • /
    • 2019
  • More than 64% of Korea's land is occupied by mountain regions, which have terrain characteristics that make it vulnerable to mountain disasters. The trails of Taebaeksan Mountain National Park-the region considered in this study-are located in the vicinity of steep slopes, and therefore, the region is vulnerable to landslides and debris flow during heavy storms. In this study, a slope stability model, which is a deterministic analysis method, was used to examine the potential occurrence of landslides. According to the soil classification of the detailed soil map, the specific weight of soil, effective cohesion, internal friction angle of soil, effective soil depth, and ground slope were used as the parameters of the model, and slope stability was evaluated based on the DEM of a 1 m grid. The results of the slope stability analysis showed that the more hazardous the area was, the closer the ratio of groundwater/effective soil depth is to 1.0. Further, many of the private houses and commercial facilities in the lower part of the national park were shown to be exposed to danger.

Development of Modeling Technique for Prediction of Driving Force and Kinetic Resistance of Agricultural Forklift (농업용 포크리프트의 구동력 및 운동저항 예측을 위한 모델링 기법 개발)

  • Jo, Jae-hyun;Kim, Jun-tae;Jeong, Jin-hyoung;Chang, Young-yoon;Park, Won-yeop;Lee, Sang-sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.3
    • /
    • pp.299-305
    • /
    • 2019
  • This study was initiated to solve the difficulties of aged and female workers in agriculture society due to aging and demise of young people. In the case of the conventional elevated lift, the risk of exposure to uneven road or work environment, not the difficulty of professional qualification and operation, and the risk of exposure to the uneven road or working environment, were also studied based on previous researches so that women could easily and efficiently perform productive agriculture. First, the simulation was carried out through the prediction model of traction performance using the object of agricultural forklift, and the soil of the Kimhae city in Gyeongnam (34.125kPa, internal friction angle 35.294deg, external friction angle 13.620deg, Adhesion force 5.750 kPa, average cone index 0-15 cm cl, 1001.8 kPa). In the case of the forklift for simulation, the driving force and the kinetic resistance prediction modeling of the agricultural electric forklift are modeled. Based on this model, the motor control drive adopts the 1232E model, which is a drive dedicated to AC motor, and divides the two drivers into master and slave And the model for the simulation was designed to control motor drive, hydraulic drive, and various outputs on the main PCB. The simulation model is undergoing continuous simulation, modification and supplementation. Based on this research, we will continue research for development of safer and more efficient agricultural electric forklift.

Modeling Study for Effects of Hydrothermal Clay Vein on Slope Stability (열수변질 점토맥이 사면 안정성에 미치는 영향에 관한 모델링 연구)

  • Jo, Hwan-Ju;Jo, Ho-Young;Jeong, Kyung-Mun
    • Economic and Environmental Geology
    • /
    • v.43 no.2
    • /
    • pp.185-196
    • /
    • 2010
  • Clay veins that occurred in a slope by hydrothermal alteration, can significantly affect its slope stability. The effect of clay veins on the slope stability was investigated by numerical modeling study. Various parameters such as cohesion, internal friction angle, orientation, groundwater level, rainfall intensity and duration, have been modelled. As shear strength increased, factor of safety increased. As groundwater level developed, factor of safety decreased. For the case of slip surface developed on interface, factor of safety was lower than that for case of slip surface developed on either weathered soil or clay vein. The effect of various soil types of the slope stability was also investigated by simulating seepage through the slopes with various soils. The groundwater level significantly increased on the slopes with silty and generic soils. For the slope with sandy soil, almost no change in groundwater level was observed due to rapid drainage.

Analysis of the Physical and Mechanical Properties of Injected High-Density Polyurethane from Laboratory Experiments and Field Tests (실내실험 및 현장실험을 통한 고밀도 폴리 우레탄 공법의 물리·역학적 특성 분석)

  • Choi, Junyoung;Kim, Daehyeon
    • The Journal of Engineering Geology
    • /
    • v.31 no.1
    • /
    • pp.83-101
    • /
    • 2021
  • The high-density polyurethane method uses the instantaneous expansion pressure of injected material to stabilize soft ground, allowing reinforcement, restoration, and construction to be carried out in suboptimal ground conditions. Under normal and, even poor conditions, the method is easily applied because the working time is very short. The method is environmentally friendly and results have excellent durability. The purpose of this study was to verify the physical and mechanical properties of high-density polyurethane in the ground. Initial testing of strength, direct shear, and soil environment stability was followed by testing for permeability in order to address environmental concerns. The results of the experiments showed that the internal friction angle was about twice as high and the adhesion was about 2.5 to 3.5 times higher than for dense and hard clay, and that the permeability factor was significantly lower compared with the existing grouting method, within the range of 1.0 × 10-5.

Characterization of Weathered Zone bearing Corestones through Scale Model Test (실내모형실험에 의한 핵석 풍화대 지반 특성 산정)

  • Woo, Ik
    • The Journal of Engineering Geology
    • /
    • v.17 no.3
    • /
    • pp.435-443
    • /
    • 2007
  • This study shows the prediction of the engineering properties of weathered zone bearing corestones through the engineering geological surveys and the scale model test in the laboratory. The window survey and the observation on the borehole core were peformed on three natural slopes in corestones area in order to analyse the distribution pattern and the geometrical properties of corestones. Natural corestones were crushed and abrased for the scale model test into less than 5 mm in maximum-2mm in average by the scale reduction ratio based on the size of natural corestones and the specimen size. Scale model tests were carried out on soil and plaster model specimens with different corestone content ratio - 0%, 10%, 20%. The direct shear test on soils shows that shear strength is increased by the increase of corestone content ratio. The increase of cohesion is, however, more important factor to the shear strength of soil for 20% corestone content ratio due to interlocking of crushed corestone particles. The plaster model test shows a tendance of increase of UCS and modulus of elasticity with increase of corestone content. The variation ratio of specimen property by change of corestone content ratio in plaster model test was applied to in situ properties in order to estimate the properties of weathered zone bearing corestones. So it could be predicted that the increase of corestone content to 10% and to 20% produce about 18% and 30% UCS's increase respectively.

Effects of pH and the Existence of CO2 Gas on the Silica Surface Characteristics at Silica/Pb(II) Solution Interface (CO2 가스의 존재 여부와 용액의 pH가 Silica/Pb(II) 용액 계면에서 Silica 표면의 특성에 미치는 영향)

  • Lee, Sang-Eun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.5
    • /
    • pp.263-271
    • /
    • 2003
  • Effects of the existence of $CO_2$ gas and pH on the silica surface characteristics at silica/Pb(II) and sodium dodecyl sulfonate (SDS, $C_{12}H_{25}SO_3Na$) solution interface were studied. The hydrophobic characteristics of silica surface was delineated by contact angle measurement and surface force measurement using atomic force microscopy (AFM). In $CO_2$ free condition provided by purging $N_2$ gas, the contact angle of fused silica surface in $10^{-4}M$ Pb(II) and SDS solution increased greatly up to $90^{\circ}$ compared with $40^{\circ}$ in atmospheric condition. It was due to the precipitation of $PbCO_3$ in atmospheric condition. In $CO_2$ free condition the change of contact angle and adhesion force ($F_{ad}$) in AFM, affected by pH change, was similar to the distribution of $PbOH^+$ ion in speciation diagram corresponding to $10^{-4}M$ total Pb(II). Therefore, it was convinced that the $PbOH^+$ ion among Pb(II) species would be the main adsorbing type on silica surface. Both of contact angle measurement and surface force measurement using AFM showed that the Pb only treatment made the silica surface hydrophobic. However, it could not be explained theoretically by current knowledge, and required further study in atomic level to solve the problem.

A Study on characteristics of planosols in korea -Part I Yeongog series (우리나라에 분포(分布)된 반층토(盤層土)의 특성(特性)에 관(關)한 연구(硏究) -제(第)1보(報) 연용통(延谷統)에 관(關)하여)

  • Um, Ki Tae;Cho, Seong Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.8 no.2
    • /
    • pp.45-51
    • /
    • 1975
  • The morphological, physical, chemical, and mineralogical characteristics of planosols in Korea were studied in an effort to establish the suitabilition of the planosols for agricultural development. The Yeongog series which are planosols were established in Korea. Results from the Yeongog series are briefly as follows : 1. Morphologically, the surface soils are brown to dark brown friable loam and subsoils are of varied colors but mainly are dark brown, black and pale brown mottles. The texture of these horizons are silty clay loam with moderate to strong platy structure and clay cutans are on the ped faces. The consistences of these horizons are extremely compact and hard when moist and sticky, plastic when wet. The substrata show varied soil colors and loam to clay loam. 2. Physically, the clay content of the Yeongog soils is highest in the subsoils and gradually decreases below the subsoils. Water holding capacity and bulk desity is higher than in other mineral soils. 3. Chemically, the organic matter content is low and soil reaction ranges from very strongly to strongly acid. The cation exchange capacity is medium and base saturation a high. Active iron, easily reducible manganese and available silicate are high compared with normal soils. 4. In chemical composition of clay fraction of the Yeongog series, sesquioxide ratio, $Fe_2O_3$, $K_2O$ and MgO are high. The cation exchange capacity of the clay fraction is also very high. 5. The clay minerals in Yeongog series are mainly kaoline, vermiculite with Al interlayers and illite. The quarts, primary minerals are in the Yeongog soils. 6. These soils are formed in a warm, humid climate under native grasses on the terraces and rolling or hilly footslopes. In soil classification, the Yeongog soils are classified planosols with claypan. According to 7th approximation system in U.S.A., the Yeongog series are classified as Fragiudalfs because they have an argillic horizon, a hard pan and a high base saturation which is more than 35 percent and classified as Eutric Planosols by FAO/UNESCO classification system.

  • PDF

Evaluation of Durability and Slope Stability of Green Soil using Cementitious Materials (시멘트 계 재료를 사용한 녹생토의 내구성 및 사면 안정성 평가)

  • Kim, Il-Sun;Choi, Yoon-Suk;Yang, Eun-Ik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.45-53
    • /
    • 2018
  • Among the various slope stabilization methods, the green soil method based on the growth of plants is advantageous to the environment, but the durability and slope stability are insufficient when the green soil method is applied to a steep slope and rock slope sites. Therefore, in this study, green soil, which improved the adhesion performance and the vegetation environment, was developed using cementitious materials and ECG, and the durability and slope stability as well as the possibility of its use as a rock vegetation base material were assessed. From the results, the adhesive force and internal friction angle were higher than that of the existing green soil so that it could be used for in situ construction. The soil hardness value was 26 mm, which was slightly higher than that of the best growth condition of the plant, 18~23 mm, and the drying shrinkage strain was approximately 3%; hence, it is not expected to affect the durability of green soil. The results of a rainfall intensity simulation for evaluating the slope adhesion force showed that slope failure did not occur under all conditions. The damage decreased with increasing slope angle. Therefore, the green soils developed in this study have excellent durability and slope stability and can be used for rock slope sites.

Evaluation of Field Applicability of Slope of Improved Soil for Ground Stabilizer (지반안정재 개량토의 토사 비탈면 현장 적용성 평가)

  • Lee, Kang-Il;Park, Seong-Bak;Choi, Min-Ju
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.1
    • /
    • pp.35-44
    • /
    • 2021
  • This research studies the stabilization method for improved soil sloped through the on-site application of Paper Flyash ground stabilizers. The target strength required for improved soil is 500 kPa, and the compressive strength for the slope surface needs to be less than 1,000 kPa after the improvement in order to plant vegetation. To meet this condition, we mixed soil from the site and the ground stabilization material, which is the main material for surface improvement material, performed mixing design and conducted various tests including strength test, permeability test and plantation test. After analyzing the results of the compression test on improved soil slope, we proposed soil constants for the improved soil. In order to evaluate the applicability of the improved soil on the slope, the site construction was carried out on the collapsed slope and the reinforcement evaluation of the surface of the improvement soil was conducted. The stability was not secured before the reinforcement, but the test shows after the reinforcement with improved soil, the safety rate is secured up to 48 hours during the raining period. In addition, the compressive strength of the improved soil at the site was secured at more than 200 kPa adhesion as planned, and the soil hardness test result was also found to be within the specified value of 18-23 mm, which increased the resistance to rainfall and ability to grow plant on the surface for improved soil.

The Effects of Geological and Topographical Features on Landslide and Land-creep (지질(地質)과 지형(地形)이 산사태(山沙汰) 및 땅밀림에 미치는 영향(影響))

  • Jau, Jae-Gyu;Park, Sang-Jun;Son, Doo-Sik;Joo, Sung-Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.3
    • /
    • pp.323-334
    • /
    • 2000
  • This study was carried out to investigate the effects of geological and topographical features on landslide and land-creep at the twenty four surveyed sites of Kyungpook province. According to the results obtained, it was concluded that continuous heavy rainfall was one of the primary factors to occur landslide and land-creep. Most of the landslides occurred in the past were concentrated in the granite and granitic gneiss zones, while land-creeps were mainly occurred in the mud-stone zones. Therefore, it was thought that the physical properties such as soil texture, solid phase, moisture contents, density, hardness and porosity rate of weathered granite and granitic gneiss could affect the occurrence of landslide and land-creep. Due to the holding of sand contents in the upper soil layers of weathered granite and granitic gneiss, rainfall could infiltrate into the soil easily. While lower soil layers contained much quantity of clay and silt contents, those soils saturated with rainfall cause to lose viscosity and shear strength. Therefore, it was seemed that landslide was occurred more easily and the saturation of those soils was made much easily by bed rocks under those soils. Landslide and land-creep are slided into lower place by gravitation and slope degree factors. Therefore, prediction of landslide occurrence is very difficult because landslide is occurred abruptly, and physical properties of the soil have to be understood and checking the existence of bed rocks under the soils is not easy, on the other hand, land-creep is progressed very slowly. Therefore, it was suggested that in a degree creeping could be protected by removing of several causing factors.

  • PDF