• Title/Summary/Keyword: 토양유기물

Search Result 1,704, Processing Time 0.035 seconds

Effects of Paper Mill Sludge in submerged Soil (제지(製紙)슬러지의 답토양(畓土壤) 시용효과(施用效果))

  • Choi, Jong Woo;Jo, Jeong Rye;Lee, Kyu Seung;Kim, Moon Kyu
    • Korean Journal of Agricultural Science
    • /
    • v.19 no.2
    • /
    • pp.187-193
    • /
    • 1992
  • The effects of continuous restoration of sludge into the reclamating paddy soil and leaching test of sludge components by soil column were investigated. 1. The contents of nitrogen, phosphorus, potassium, C.E.C. and organic matter(O.M.) were increased in/on the paddy soil treated with paper mill sludge than non-treated. 2. Humic layer depth recognized by color showed the non-treated(10 cm), second year(15 cm) and third year(20 cm), respectively. 3. The effects of sludge treatment showed in the contents of O.M. such as non-treatment(0.9 %) < second year(1.39 %) < third year(1.75 %) in 10 cm depth. 4. All components in soil tested with column were increased by holding capacity of sludge, and the contamination effects of soil and ground water were not found by leaching test.

  • PDF

Degradation of [$^{14}C$]Carbofuran in Soils and Characterization of its Nonextractable Residues (토양중 [$^{14}C$Carbofuran의 분해 및 비추출성 잔류분의 특성)

  • Park, Chang-Kyu;Lee, Young-Deuk
    • Applied Biological Chemistry
    • /
    • v.38 no.3
    • /
    • pp.263-268
    • /
    • 1995
  • A study was undertaken to compare degradation patterns of carbofuran in soils between submerged and upland moisture conditions [$3-^{14}C$]Carbofuran was treated in each soils at the rate of 1.0 mg/kg (87.8 kBq $^{14}C/50g$ soil) and the time-course analysis for distribution of radioactivity and degradation products were conducted. Differences in the pathway and rate of carbofuran degradation in soils were observed between submerged and upland moisture conditiona major degradation being hydrolysis at 7-C position and oxidation at 3-C position, respectively. Carbofuran showed less persistence in soils of higher moisture contents A significant portion, $24{\sim}39%$ of the total radioactivity, resided in soils as nonextractable residues at 60 days after treatment The nonextractable radioactivity was mainly located in soil organic matter, fulvic acid, humic acid and humin factions Gel filtration chromatography confirmed the incorporation of carbofuran and its degradation products into the organic matter.

  • PDF

Cropping Systems for Vegetable Peanut and Environmental Effect of Residue Incorporation in Soil (풋땅콩 작부체계와 수확 후 잔존 유기물의 친환경적 효과)

  • 김정태;배석복;박향미;윤을수;김민태;최진용
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.6
    • /
    • pp.452-459
    • /
    • 2003
  • A new demand for vegetable peanut (Arachis hypogaea L.) in Korea has increased farmers interest in growing vegetable peanut. Compared to grain peanut production, vegetable peanut production enables the growth period to be shortened by 20 or 30 days and farmers to adopt various cropping systems and to return crop residues in the soil. With the purpose of establishing desirable cropping systems for sustainable vegetable peanut production, three field experiments were conducted from 2000 to 2001 at Milyang, the southeastern part of Korea. Main focuses were given into the effect of cropping systems for vegetable peanut production on each crop's yield and soil sustainability. The cropping systems investigated were single vegetable peanut, peanut-radish-green barley, peanut-barley, and peanut-garlic cropping system, with or without crop residue incorporation in the soil. Among the cropping systems investigated for sustainable vegetable peanut production, peanut-only and peanut-radish-green barley cropping systems showed vulnerable to diseases and lodging while peanut-barley and peanut-garlic cropping systems showed higher stability in response to diseases and lodging, consequently leading to higher yield potential of vegetable peanut production. In the peanut-barley cropping system, both barley and peanut residues returned to the soil played an important role in soil improvement as well as in significantly increased grain yield of peanut and barley. A particular notice was taken to the pronounced increase in Trichoderma population and the amount of nitrogen mineralization induced by the returned barley residue. Soil structure, compactness, pH, and fertility were positively influenced by the returned crop residues, which apparently increased sustainability in vegetable peanut production systems.

Growth Characteristics of Lychnis Cognate and Soil Moisture by Organic Mulching Material Type in Extensive Green Roof System (저관리 경량형 옥상녹화에서 유기물 멀칭재 유형에 따른 토양수분과 동자꽃의 생육 특성)

  • Park, Sun Young;Chae, Ye Ji;Choi, Seung Yong;Yoon, Yong Han;Ju, Jin Hee
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.2
    • /
    • pp.107-112
    • /
    • 2022
  • This study was conducted to investigate the effects of mulching materials in extensive green roof system by comparing and analyzing the soil moisture content and growth response of Lychnis cognata according to the types of organic mulching materials. The experimental group consisted of a control group that did not use mulching material (Cont.) and a total of five treatment groups, including cocochip (C.O), woodchip (W.O), straw (S.T), and sawdust (S.A), depending on the mulching material. The soil moisture content according to the type of organic mulching material was high in the order of W.O > S.T > Cont. > C.O > S.A, and there was a significant difference especially in S.A. The plant height showed good growth in the order of S.T > Cont. > C.O > W.O > S.A, and there was no significant difference by mulching materials in other growth items except for plant height. Both the chlorophyll and plant water contents were superior to those of untreated group, so the treatment of organic mulching materials is considered to be effective in maintaining the chlorophyll and plant water contents of Lychnis cognata. In particular, the soil moisture content was affected by the characteristics of the mulching material itself. Based on these results, it is required to use a mulching material suitable for the characteristics of each plant in extensive green roof system and it is considered that this can be overcome through organic mulching when selecting a plant species that is weak to water stress.

Change of Organic Matter Decomposition Rates and Greenhouse Gas Emission of the Soil of Gyeongan Stream under Different Environmental Conditions (환경 조건 차이에 의한 경안천 토양의 유기물 분해속도와 온실가스 발생 변화)

  • Choi, In Young;Kang, Min Kyoung;Choi, Jung Hyun
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.1
    • /
    • pp.75-85
    • /
    • 2013
  • This study investigated the effects of organic matter decomposition on the emission of greenhouse gas under the influence of environmental factors such as change of climate condition ($CO_2$ concentration and temperature), vegetation, and N concentration in the soil of Gyeongan stream in the laboratory. The experimental results showed that organic matter decomposition and $CH_4$, $CO_2$ flux were influenced by changes of complex environmental conditions. Organic matter decomposition rate was affected by changes of climate condition with N concentration and climate condition with vegetation. Through the results of $CH_4$, $CO_2$ flux, $CH_4$ flux was affected by change of climate condition with N concentration and climate condition with vegetation and affected by the presence of vegetation and N concentration. $CO_2$ flux was affected by change of climate condition with vegetation and vegetation with N concentration. According to results of the study, change of (1) climate conditions, (2) vegetation, and (3) N concentration, each have an effect on organic decomposition rate, that also influences emission of greenhouse gas. It is known that climate change is related to an increase in greenhouse gasses in the atmosphere However, additional study will be needed whether vegetation could remove positive effect of nitrogen addition in soil since this study shows opposite results of organic matter decomposition in response to the nitrogen addition.

The Growth and Yield Differences in Kenaf (Hibiscus cannabinus L.) in Reclaimed Land Based on the Physical Types of Organic Materials (간척지에서 유기물 투입 형태에 따른 케나프의 생육반응)

  • Kang, Chan Ho;Lee, In Sok;Go, Do Young;Kim, Hyo Jin;Na, Young Eun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.1
    • /
    • pp.64-71
    • /
    • 2018
  • To improve the soil of reclaimed land, we added organic materials at a level of 3,000 kg/10 a. As a result, the electrical conductivity (EC) value of reclaimed soil decreased by 58%, the organic material content increased from 6.7 to 16.0 g/kg, the porosity increased from 1.57 to 1.31%, the soil hardness decreased from 20.2 to 17.9 mm and the plow layer was deepened from 19.8 to 26.8 cm. After these physiochemical improvements to the reclaimed soil, the growth phase of crops was improved compared to that of non-treatment crops. The height of kenaf (Hibiscus cannabinus L.) cultivated in the reclaimed land containing organic materials was increased by 18.8%. Especially, the improvement effects of pellet type manure compost and rice straw on kenaf were more preferable than those of other organic materials. When the kenaf was cultivated in the reclaimed land containing organic materials, the yield increased. The average yield of the treatment crops was 9,218 kg/10 a, 2.1 times higher than that of non-treatment crops. The most effective treatments to increase the yields were pellet type manure compost (10,848 kg/10 a, 148% increase), rice straw (120% increase) and chopped kenaf (95% increase). To increase the physicochemical enhancements to the reclaimed land soil and most improve yields, the most effective type of organic materials was the pellet. The organic material types that maintained a better growth phase and most increased the yield were the liquid and pellet types. When we used pellet type organic material, the plant height of kenaf was increased by 41% in comparison with that of the non-treatment crops and yield was increased by more than 122%. Additionally liquid type organic material improved the yield (by 127%).

Effect of Moisture and Nutrient of Soil on Reproductive Phenology and Physiological Response of Epilobium hirsutum L., an Endangered Plant (토양의 수분과 유기물이 멸종위기식물 큰바늘꽃(Epilobium hirsutum L.)의 번식계절 및 생리 반응에 미치는 영향)

  • Lee, EungPill;Lee, SooIn;Han, YoungSub;Lee, SeungYeon;You, YoungHan;Cho, YiYun
    • Journal of Wetlands Research
    • /
    • v.20 no.1
    • /
    • pp.27-34
    • /
    • 2018
  • Reproductive phenology and physiological responses of Epilobium hirsutum L. to moisture content and nutrient content of soil were analysed in order to obtain basic data for effective conservation and restoration. Epilobium hirsutum L. is a perennial plant. But Epilobium hirsutum L. grew reproductively in all moisture and nutrient gradients. Flower bud, flowers and peduncle were respectively ripened in earlier under highest moisture condition and highest nutrient condition. And, number of flowers and peduncle were more quickly increased under highest moisture condition and highest nutrient condition. Chlorophyll content was high under highest moisture condition and higher middle moisture condition. However, we found no significant difference of chlorophyll content regard to nutrient gradients. There was no difference in minimum chlorophyll fluorescence among all moisture and nutrient gradients. The photochemical efficiency values of PS II were 0.75 in all moisture gradients, and it was 0.78 in highest nutrient gradient. The chlorophyll content of Epilobium hirsutum L. increased as the moisture content increased, and the Fv/Fm value increased as the organic matter increased. Our results showed that high moisture and nutrient content of soil advance their breeding season and promote reproductive growth. It might be important basic informations for the maintenance of population and the management of habitat of Epilobium hirsutum L. an endangered plant species.

The Changes of Specific Surface Area of Soils after Peroxidation and Its Implication for the Calculation of Critical toads of Soil Acidification (Peroxidation 전후의 토양 비표면적 변화와 토양산성화 임계부하량 계산에의 의의)

  • Yeo, Sang-Jin;Lee, Bumhan;Soyoung Sung;Kim, Soo-Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.195-204
    • /
    • 2002
  • Mineralogy and the exposed surface area are two of the most important factors controlling dissolution and weathering rates of soils. The mixture of inorganic and organic materials of various size distributions and structures that constitute soils makes the calculation of weathering rates difficult. The surface area of soil minerals plays an important role in most of programs for calculating the weathering rates and critical loads. The Brunauer-Emmett-Teller (BET) measurement is recommended for the measurement of specific surface area. However, BET values measured without organic matter removal are in fact those far all the N2-adsorbed surface areas, including the surfaces covered and aggregated with organisms. Surfaces occupied by organisms are assumed to be more reactive to weathering by organic activities. Therefore, the BET surface area difference before and after organic removal depicts the area occupied by organisms. The present study shows that the BET values after organic matter removal using $H_2$O$_2$ are larger than those without removal by 1.68~4.87 $m^2$/g. This implies that BET measurement without organic removal excludes the reactive area occupied by organisms and that the area occupied by organisms in soils is much larger than expected. It is suggested that specific surface area measurement for calculating weathering rates of mineral soils should be made before and after organic matter removal. The results of a column experiment are presented to demonstrate the potential retarding influence that this organic matter may have on mineral dissolution and weathering.

Monitoring of Soil Chemical Properties and Pond Water Quality in Golf Courses after Application of SCB Liquid Fertilizer (골프코스에서 SCB저농도액비 살포에 따른 토양화학성과 연못수질의 모니터링)

  • Kim, Young-Sun;Ham, Suon-Kyu;Lim, Hye-Jung
    • Asian Journal of Turfgrass Science
    • /
    • v.26 no.1
    • /
    • pp.44-53
    • /
    • 2012
  • As SCB liquid fertilizer (SCB) produced from or out of livestock manure by slurry composting and biofiltration process was applied in golf course, the effect on soil properties and water quality was little investigated. This study was conducted to evaluate the effect of the SCB liquid fertilizer application on environment by monitoring chemical property of soil and water quality of pond as applied chemical fertilizer (CF) and SCB. SCB application rarely contaminated the soil and pond in golf course and decreased organic matter, CEC and Ca in soil and pH and T-N for water quality of pond. In correlation coefficient between soil property parameters, water quality parameters and water quality items, SCB applied in golf course decreased organic matter and CEC in soil and increased SAR in water quality (P<0.01). Nitrogen applied in golf course with SCB or CF was significantly related to T-N in the soil (P<0.01), but not significantly related to T-N in the pond water. These results showed that SCB application little contaminated soil and pond in golf course, and was expected to control of thatch in soil and algae in pond.

PAHs Degrading Bacterium Separation and Identification for Biological Treatment (PAHs의 생물학적 처리를 위한 분해 미생물 분리 동정)

  • Kim, Man;Choi, Kyoung-Kyoon;Go, Myong-Jin;Park, Jeong-Hun
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.6
    • /
    • pp.70-77
    • /
    • 2007
  • Pseudomonas sp. KM1 was separated from soil contaminated by petroleum and identified. The isolated strain is Gram-positive, rod-shaped and immotile. In batch culture, the optimum cultivation temperature and pH was $35^{\circ}C$ and 7, respectively. Biodegradation of PAHs experiment with soil slurry system was performed using Pseudomonas sp. KM1. Pseudomonas sp. KM1 could degrade 7 PAHs including naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, pyrene, and fluoranthene. These mixed PAHs was easily degraded within one day except fluoranthene, which was degraded much slowly, taking several days by this isolated bacteria. Pseudomonas sp. KM1 is good candidate for bioremediation of PAHs contaminated soils. Biodegradation rates of naphthalene, phenanthrene and pyrene in soils were different at each soil, and the rates were decreased as sorption capacity increased.