DOI QR코드

DOI QR Code

Change of Organic Matter Decomposition Rates and Greenhouse Gas Emission of the Soil of Gyeongan Stream under Different Environmental Conditions

환경 조건 차이에 의한 경안천 토양의 유기물 분해속도와 온실가스 발생 변화

  • Choi, In Young (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Kang, Min Kyoung (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Choi, Jung Hyun (Department of Environmental Science and Engineering, Ewha Womans University)
  • 최인영 (이화여자대학교 환경공학과) ;
  • 강민경 (이화여자대학교 환경공학과) ;
  • 최정현 (이화여자대학교 환경공학과)
  • Received : 2012.08.14
  • Accepted : 2012.12.28
  • Published : 2013.03.31

Abstract

This study investigated the effects of organic matter decomposition on the emission of greenhouse gas under the influence of environmental factors such as change of climate condition ($CO_2$ concentration and temperature), vegetation, and N concentration in the soil of Gyeongan stream in the laboratory. The experimental results showed that organic matter decomposition and $CH_4$, $CO_2$ flux were influenced by changes of complex environmental conditions. Organic matter decomposition rate was affected by changes of climate condition with N concentration and climate condition with vegetation. Through the results of $CH_4$, $CO_2$ flux, $CH_4$ flux was affected by change of climate condition with N concentration and climate condition with vegetation and affected by the presence of vegetation and N concentration. $CO_2$ flux was affected by change of climate condition with vegetation and vegetation with N concentration. According to results of the study, change of (1) climate conditions, (2) vegetation, and (3) N concentration, each have an effect on organic decomposition rate, that also influences emission of greenhouse gas. It is known that climate change is related to an increase in greenhouse gasses in the atmosphere However, additional study will be needed whether vegetation could remove positive effect of nitrogen addition in soil since this study shows opposite results of organic matter decomposition in response to the nitrogen addition.

이 연구는 경안천 토양에서 기후 조건의 차이, 식물의 유무, 질소 농도의 차이에 따른 토양의 생물학적 유기물 분해속도의 변화가 대기 중 온실가스($CH_4$, $CO_2$) 발생에 미치는 영향을 알아보고자 하였다. 본 연구 결과, 유기물 분해속도와 $CH_4$, $CO_2$ flux 모두 환경 조건이 동시에 변화하는 경우에 영향을 받음을 알 수 있었다. 유기물 분해 속도는 기후 조건의 차이와 질소농도의 차이, 기후 조건 차이와 식물의 유무가 있는 경우에 영향을 받음을 알 수 있었다. $CH_4$ flux는 기후 조건 차이와 질소 농도의 차이, 기후 조건 차이와 식물의 유무, 식물의 유무와 질소 농도의 차이가 있는 경우에 영향이 있었으며 $CO_2$ flux는 기후 조건 차이와 식물의 유무, 식물의 유무와 질소 농도의 차이가 있는 경우에 영향이 있음을 통해 기후 조건 차이와 식물의 유무, 질소 농도의 차이가 유기물 분해속도에 영향을 주어 대기 중 온실가스 발생에 영향을 줄 수 있음을 알 수 있었다. 기후 조건 차이는 토양의 분해를 증진시켜 대기로 방출되는 온실가스 또한 가중시킬 수 있다고 알려져 있으나, 본 연구를 통해 기후변화가 유기물의 분해와 대기로의 온실가스 방출을 감소시킬 수 있다는 결과를 도출할 수 있었으며 기후 조건 차이 외의 질소가 유입될 경우, 순영향(positive effect)을 주게 됨을 알 수 있었다. 그러나 식물의 영향이 작용할 경우 질소의 유입으로 인한 순영향을 감소시킬 수 있음을 알 수 있었으며, 이에 따른 추가적인 연구가 필요할 것으로 판단된다.

Keywords

References

  1. Aber, J.D., A. Magill, R. Boone, J.M. Melillo, P. Steudler and R. Bowden. 1993. Plant and soil responses to three years of chronic nitrogen additions at the Harvard Forest. Petersham, MA. Ecological Appllications 3: 156-166. https://doi.org/10.2307/1941798
  2. Armstrong, W. 1979. Aeration in higher plants. Advanced in Botanical Research 7: 225-232.
  3. Berner, R.A. 1980. Early Diagenesis. A Theoretical Approach, Princeton University Press, Princeton., NJ, 241.
  4. Billes, G., H. Rouhier and P. Bottner. 1993. Modifications of the carbon and nitrogen allocations in the plant (Triticum aestivum L.) Soil system in response to increased atmospheric $CO_2$ concentration. Plant and Soil 157(2): 215-225. https://doi.org/10.1007/BF00011050
  5. Burton, A.J., K.S. Pregitzer, J.N. Crawford, G.P. Zogg and D.R. Zak. 2004. Simulated chronic $NO_3$ - deposition reduces soil respiration in northern hardwood forests. Global Change Biology 10: 1080-1091. https://doi.org/10.1111/j.1365-2486.2004.00737.x
  6. Cao, M. and F.I. Woodward. 1998. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature 393: 249-252. https://doi.org/10.1038/30460
  7. Cardon, Z.G. 1996. Influence of rhizodeposition under elevated $CO_2$ on plant nutrition and soil organic matter. Plant and Soil 187(2): 277-288.
  8. Coviella, C.E., D.J.W. Morgan and J.T. Trumble. 2000. Interactions of Elevated $CO_2$ and Nitrogen Fertilization: Effects on Production of Bacillus thuringiensis Toxin in Transgenic Plants. Environmental and Entomology 29(4): 781-787. https://doi.org/10.1603/0046-225X-29.4.781
  9. Davidson, E.A., E. Belk and R.D. Boone. 1998. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology 4: 217-227. https://doi.org/10.1046/j.1365-2486.1998.00128.x
  10. Galloway, J.N., F.J. Dentener and D.G. Capone. 2004. Nitrogen cycles: past, present, and future. Biogeochemistry 70(2): 153-226. https://doi.org/10.1007/s10533-004-0370-0
  11. Galloway, J.N., W.H. Schlesinger, H. Levy, A. Michaels and J.L. Schnoor. 1995. Nitrogen fixation: Anthropogenic enhancement-environmental response. Global Biogeochemical. Cycles. 9: 235-252. https://doi.org/10.1029/95GB00158
  12. Hirschel, G., C.H. Korner and J.A. Arnone. 1997. Will rising atmospheric $CO_2$ effect leaf litter quality and in situ decomposition rates in native plant communities? Oecologia 110(3): 387-392. https://doi.org/10.1007/s004420050173
  13. IPCC, Climate change. 2007. The Physical Science Basis. Cambridge University Press, New York.
  14. IPCC, Climate change. 2007. IPCC Fourth Assessment Report (AR4). Cambridge University Press, New York.
  15. Kim, K.T. and J.H. Kim. 2005. Analysis of Landscape structure change for Riparian Buffer Zone KyangAn Watershed. Journal of the Korean Association of Geographic Information Studies 8(3): 74-83.
  16. Korner, C. and J.A. Arnone. 1992. Responses to elevated carbon dioxide in artificial tropical ecosystems. Science 257: 1672-1675. https://doi.org/10.1126/science.257.5077.1672
  17. Kristina, A.G. 2009. Basic biological factors of soil carbon and nitrogen. National soil survey center, NRCS, USDA, Lincoln, Nebraska.
  18. Lal, R. and J. Kimble. 1995. Soils and Global Change. In Advances in Soil Science. CRC Press, 1-2.
  19. Lim, B.M., B.M. Ki and J.H. Choi. 2009. A Study on the Biogeochemistry of the Sediments in the Han River Estuary. Journal of Korean Society of Environmental Engineers 31(10): 839-844.
  20. Luxmoore, R.J. 1981. $CO_2$ and Phytomass. Bio Science 31: 626.
  21. Mosier, A.R. 1998. Soil processes and global change. Biology and Fertility of Soils 24(3): 221-229.
  22. Olsson, P., S. Linder, R. Giesler and P. Hogberg. 2005. Fertilization of boreal forest reduces both autotrophic and heterotrophic soil respiration. Global Change Biology 11: 1745-1753.
  23. Rastetter, E.B., R.B. Mckane, G.R. Shaver and J.M. Melillo. 1992. Changes in C storage by terrestrial ecosystems: How C-N interactions restrict responses to $CO_2$ and temperature. Water Air & Soil Pollution 64(1): 327-344. https://doi.org/10.1007/BF00477109
  24. Richard, L.D. and E.W. Gordon. 1983. Growth limiting soil bulk densities as influenced by soil texture. Watershed systems development group USDA Forest service.
  25. Roden, E.E. and R.G. Wetzel. 1996. Organic carbon oxidation and suppression of methane production by microbial Fe(III) oxide reduction in vegetated and unvegetated freshwater wetland sediments. Limnology and Oceanography 41(8): 1733-1748. https://doi.org/10.4319/lo.1996.41.8.1733
  26. Rolston, D.E. 1986. Methods of Soil Analysis: Part 1, Physical and Mineralogical Methods, 2nd Edition. American Society of Agronomy/Soil Science of America, Madison, Wisconsin.
  27. Swanston, C., P.S. Homann, B.A. Caldwell, D.D. Myrold, L. Ganio and P. Sollins. 2004 Long-term effects of elevated nitrogen on forest soil organic matter stability. Biogeochemistry 70: 227-250.
  28. Vitousek, P.M., J.D. Aber, R.W. Howarth, G.E. Likens, P.A. Matson, D.W. Schindler, W.H. Schlesinger and G.D. Tilman. 1997. Human alteration of the global nitrogen cycle: Sources and consequences. Ecology Application 7: 737-750.
  29. Yunsheng, L., L. Zhongpei and Z. Taolin. 2003. Carbon dioxide flux in a subtropical agricultural soil of China. Water Air & Soil Pollution 149(1): 281-293. https://doi.org/10.1023/A:1025727504841
  30. Zak, D.R., K.S. Pregitzer, P.S. Curtis, J.A. Teeri, R. Fogel and D.L. Randlett. 1993. Elevated atmospheric $CO_2$ and feedback between carbon and nitrogen cycles. Plant and Soil 151(1): 105-117. https://doi.org/10.1007/BF00010791
  31. Zhu, R., L. Yashu, X. Hua, H. Tao, S. Jianjun, M. Erdeng and S. Liguang. 2010. Carbon dioxide and methane fluxes in the littoral zones of two lakes, east Antarctica. Atmospheric Environment 44(3): 304-311. https://doi.org/10.1016/j.atmosenv.2009.10.038