• 제목/요약/키워드: 토양용액

검색결과 465건 처리시간 0.034초

질산태 질소 정량을 위한 환원 증류법에서 Devarda's Alloy의 입자크기 및 함량이 미치는 영향 (Particle Size Effects of Devarda's Alloy on the Recovery of Nirate N Determined by the Steam Distillation Method)

  • 정석호;권현재;정덕영;한광현
    • 한국토양비료학회지
    • /
    • 제44권3호
    • /
    • pp.387-393
    • /
    • 2011
  • 본 연구는 환원증류법을 사용하여 축사, 매립지, 시설재배지 등 높은 수준의 질산태 질소로 오염된 토양의 질산태질소 함량을 정확히 측정하는데 있어서, Devarda's alloy 의 입자 크기가 질산태 질소의 회수율에 미치는 효과와 Devarda's alloy의 처리량과 환원된 질산태 질소의 양과의 상관관계, 고농도의 질산태 질소를 함유한 토양 추출액의 정확한 분석을 위한 적절한 접근방법을 파악하고자 수행되었다. 본 연구에서 시험된 각 Devarda's alloy는 입자 크기의 분포가 서로 달랐으며, 이는 다소 높은 질산태 질소 조건인 1 mg과 2 mg $NO_3$-N에서 서로 다른 질산태 질소 회수율로 반영 되었다. 한편, 고농도의 질산태 질소 조건에서는 모든 Devarda's alloy들이 용액 중 질산태 질소의 함량이 증가할수록 급격히 질산태 질소의 회수율이 감소하는 경향을 보였으나, 시험된 모든 Devarda's alloy들은 예상과 달리, 단위 질량 당 환원된 질산태 질소의 양이 용액중 질산태 질소의 양에 비례하여 감소하는 경향을 보였다. 이상의 연구결과들은 높은 수준의 질산태 질소로 오염된 토양 시료를 안정적으로 분석하기 위해서는 Devarda's alloy의 입자 크기 분포를 감안한 충분한 처리, 그리고 두 수준 이상의 Devarda's alloy를 처리한 후 회수된 질산태 질소량 변화를 살피는 것이 필요하다는 것을 제시한다. 아울러, 본 연구에서 발견된 질산태 질소량의 화학적 비당량성은 앞으로의 연구를 통해 보다 자세히 조사되어야 할 것으로 사료된다.

토양 및 식물 중 디캄바 측정법에 대한 연구 (The measurement of dicamba in soil and plants)

  • 신호상
    • 분석과학
    • /
    • 제22권6호
    • /
    • pp.480-487
    • /
    • 2009
  • 토양 및 식물 중 잔류하는 제초제 디캄바를 기체크로마토그래피-질량검출법으로 측정하는 방법을 개발하였다. 토양 또는 식물 시료를 pH 2로 조절한 후 diethyl ether로 추출한 다음 0.1 N HCl로 정제한 후 증발 건조시켰다. 잔류물에 10% 황산 메탄올 용액 1 mL를 가한 후 $80^{\circ}C$에서 2 시간 반응시켰다. 반응 후 탄산수소소듐 포화용액 4 mL를 서서히 가하여 중화시킨 후 diethyl ether 5 mL로 재 추출 한 다음 추출액을 농축시켜 GC/MS에 주입하여 분석하였다. 그 결과 $1.0{\sim}100{\mu}g/kg$의 정량구간 내에서 $R^2$=0.999 이상의 좋은 직선성을 보였다. 분석결과 총 32개 토양 시료 중 15개 토양에서 디캄바가 $2.9-123.9{\mu}g/kg$의 농도범위로 검출되었다. 한편 식물에서는 총 10개의 시료 중 5 개 시료에서 디캄바가 $43-33,252{\mu}g/kg$의 농도범위로 검출되었다. 따라서 소나무가 고사한 이유는 디캄바를 직접 나무에 또는 주변에 뿌렸기 때문으로 판단된다.

임해매립지의 생태계 복구를 위한 토양중 염류의 활성도 분석 (Effect of Soil Salinity for Ecological Restoration in the Reclaimed Area of Seasides)

  • 정관순;김형복
    • 한국토양비료학회지
    • /
    • 제32권2호
    • /
    • pp.147-154
    • /
    • 1999
  • 본 연구는 임해매립지에서 생태적인 복구를 위한 토양관리 방안을 제시하기 위하여 매립특성에 따라 준설매립지역에서 매립연도를 구분하여 준설토의 화학적 특징을 조사하였고, 수목이 염류에 피해를 받지 않도록 여러 가지 식재기반을 조성한 후 조성방법에 대한 염류차단 효과를 검토하였다. 준설초기의 토양은 침출용액의 pH 7.5, EC $11.3{\sim}10.6dSm^{-1}$ 치환성나트륨백분율이 34.8~35.2%로 알칼리성염류토양의 특징을 나타냈고, EC, 치환성 $Na^+$, $Cl^-$의 양은 매립 후 6년까지 현저하게 감소되었으나 토양의 화학적 특성은 수목이 생장하기에는 아주 부적절한 조건을 가지고 있었다. 식재기반 조성지에서 토양중 치환성나트륨백분율은 표층보다 심층에서 높았으며, 완충녹지보다 근린공원과 가로수지역에서 높게 나타났다. 토양포화침출용액에서 $Na^+$, $Cl^-$$SO_4^{2-}$의 농도는 다른 이온들보다 높았고, $Na^+$, $Cl^-$의 농도는 표층보다 심충에서 증가하였으며, 완충녹지보다 근린공원과 가로수지역에서 높았다. 토양중 $Ca^{2+}+Mg^{2+}$ 함량은 근린공원과 가로수지역보다 완충녹지에서 높았으나 토양 포화침출용액내 $Ca^{2+}+Mg^{2+}$ 함량은 완충녹지보다 근린공원과 가로수에서 높았는데 이는 토양중 치환성 $Na^+$ 함량 차이에서 기인되었다. 따라서 임해매립지의 식재기반 조성방법에 대한 염류차단효과는 완충녹지가 가장 높았으며, 가로수지 역에서 염분농도는 가장 높게 나타났다. 그리고 동일한 식재기반 조성에 대하여 성토높이에 따라서 염분차단 효과는 다르게 나타나 성토 높이가 70cm보다 120cm인 지역이 토양중 염분농도가 낮았다.

  • PDF

탈착 등온식을 이용한 토양 중 인산 완충력 측정 (Measurement of Phosphorus Buffering Power in Various Soils using Desorption Isotherm)

  • 이진호;제임스 두리틀
    • 한국토양비료학회지
    • /
    • 제37권4호
    • /
    • pp.220-227
    • /
    • 2004
  • 인산은 식물 영양 물질과 환경 오염원으로 대비되는 불질이의로, 인산의 탈착 반응에 대한 연구는 농업과 환경에 관련된 토양 중에서 인산의 작용기작을 이해하기 위하여 필수적이다. 본 연구는 인산 탈착 유효량(Q)과 가용량(I)의 매개 변수($Q_{max}$$I_0$)와 관련된 인산 완충력을 측정하고, 그 매개 변수와 토양 특성간의 상관관계에 대한 특징을 조사하였다. 토양은 인산 무처리 표본과 $KH_2PO_4$ 용액을 사용하여 $100mg\;P\;kg^{-1}$의 농토를 처리한 표본을 이용하였다. 인산 탈착 Q/I 곡선은 음이온교환수지비즈법을 사용하여 얻었고, 실험 방정식 ($Q=aI^{-1}+bIn(I+1)+c$)을 이용하여 탈착 곡선을 설명하였다. 유효 인산 함량이 높은 토양 (${\g}20mg\;kg^{-1}$ of Olsen P)에서는 인산 처리 유무와 관계 없이 인산 탈착 Q/I 곡선은 특징적인 오목형 곡선 형태를 보였으나, 유효 인산 함량이 낮은 토양 (${\lt}20mg\;kg^{-1}$ of Olsen P)에서는 인산의 추가 처리 없이는 오목형 인산 탈착 Q/I 곡선을 얻을 수 없었다. 인산 추가 처리 시, 고형의 불안정 결합형 인산량$Q_{max}$)과 용액 내 인산량($I_0$)은 증가하였으나, $Q_{max}$$I_0$의 비율은 감소하였다. 그로 인하여, 인산의 완충력($|BP_0|$)을 나타내는 인산 탈차 Q/I 곡선의 경사가 감소하였다. 유효 인산 함량이 높은 토양 중 인산 무처러 표본의 인산 완충력($|BP_0|$)은 $48\;61L\;kg^{-1}$ 인산 추가 처리 표본의 인산 완충력은 $18\;44L\;kg^{-1}$ 사이에서 나타났으며, 실험에 사용된 모든 토양에 인산을 추가 처리한 후 나타난 인산 완충력은 $14\;79L\;kg^{-1}$ 사이에서 나타났으며, 또한 $Q_{max}$ 계수는 $71.4\;173.1mg\;P\;kg^{-1}$, $I_0$ 계수는 $0.98\;3.72mg\;P\;L^{-1}$ 사이에서 다양하게 나타났다. 인산 완충력을 지배하는 $Q_{max}$$I_0$, 계수는 토양 특성 중 하나의 특정 인자와 관련된 것으로는 볼 수 없었다. 그러나, 이들 계수는 토양 pH, 점토함량, 유기물함량 빛 석회함유 여부와 복잡하게 관련되어 있다. 또한, 토양으로부터 인산의 방출 활성은 처리된 인산의 천연 불안정 인산의 탈착성에 현저히 의존하였다.

치환양(置換陽) ion의 종류(種類) 및 pH 가 토양(土壤)의 양(陽) ion 치환용량(置換容量)에 미치는 영향(影響) (Contributions of Ionic Strength, pH, and Replacing Cations to the Cation Exchange Capacities of Soils)

  • 임형식;곽판주;김희중
    • 한국토양비료학회지
    • /
    • 제17권2호
    • /
    • pp.114-124
    • /
    • 1984
  • 강원도(江原道) 경작지토양(耕作地土壤)을 대표(代表)할 수 있는 석회암(石灰岩)(평창군(平昌郡) 대화면(大和面)), 하성충적층지대(河成沖積層地帶)(춘천시(春川市) 우두동(牛頭洞), 원성군(原城郡) 문막면(文幕面)), 현무암지대(玄武岩地帶)(철원군(鐵原郡) 동송면(東松面))의 답토양(畓土壤)을 시료(試料)로 사용(使用)하여 CEC(양(陽) ion 교환용량(交換容量) : Cation exchange capacity) 측정방법간(測定方法間)의 차이(差異)와 문제점(問題點)을 검토(檢討)하였으며 또한 ion 강도(强度), pH, 치환(置換) ion의 변화(變化)가 토양(土壤) CEC에 미치는 영향(影響)을 조사(調査)하였다. CEC 측정방법(測定方法)은 방법간(方法間)의 공통과정(共通過程)인 포화(飽和), 유척(流滌), 치환(置換)의 과정(過程)에서 진탕기(振蕩器)와 원심분리기(遠心分離器)를 사용(使用)하는 방법(方法)이 Column을 사용(使用)하는 방법(方法)이나 여과기(濾過器)를 사용(使用)하는 방법(方法) 그리고 Brown법(法)보다 우수한 것으로 판단되었다. 포화(飽和) ion의 강도(强度)(농도(濃度))가 CEC에 미치는 영향(影響)은 일반적(一般的)으로 ion강도(强度)가 높을수록 포화회수(飽和回數)가 적으면서도 큰 CEC 값을 얻었으나 석회암지대(石灰岩地帶) 안미통(統) 토양(土壤)의 경우(境遇)는 1가(價) ion으로 포화시(飽和時) ion강도(强度)가 높거나 포화(飽和)횟수가 많을수록 CEC값이 감소(減少)하였다. 일반적(一般的)으로 토양(土壤)의 pH가 증가(增加)함에 따라 비례적(比例的)으로 CEC가 증가(增加)하였으나 하성충적층지대(河成沖積層地帶) 특(特)히 Al함량(含量)이 많은 춘천(春川) 규암통토양(統土壤)의 경우(境遇) pH가 5.5에서 7.5로 변(變)할 때 CEC의 급격(急激)한 상승(上昇)을 보였다. CEC 측정(測定)에 사용(使用)하는 양(陽) ion의 선택(選擇)은 일반적(一般的)으로 2가(價) ion으로 포화(飽和)하고 2가(價) ion으로 치환(置換)하는 것이 1가(價) ion을 사용(使用)할 때보다 높은 CEC 값을 나타내었다. 강원도(江原道) 토양(土壤)의 CEC의 70%는 유기물(有機物)에 의한 것이었다. 토양(土壤)의 CEC 측정시(測定時) 평창(平昌)과 원성토양(原城土壤)은 0.5M 2가(價) ion 용액(溶液)으로 2~3회(回), 철원토양(鐵原土壤)은 3~4회(回) 포화(飽和)하고 치환(置換)은 0.25M 2가(價) ion 용액(溶液)으로 3회정도(回程度) 행(行)하는 것이 바람직 하였다.

  • PDF

광미-물 상호반응에서 반응시간이 중금속 용출에 미치는 영향 (The Effects of Kinetics on the Leaching Behavior of Heavy Metals in Tailings-Water Interaction)

  • 강민주;이평구;김상연
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제11권1호
    • /
    • pp.23-36
    • /
    • 2006
  • 이번 연구는 광미시료를 대상으로 반응시간(1, 2, 4, 7, 14, 21 및 30일)과 반응용액의 pH(1, 3 및 5)를 달리하여 실내 용출실험을 실시하였다. pH 5와 pH 3의 반응용액과의 용출실험에서는 반응 2일 후 최종 pH가 4.6-6.1 혹은 2.8-3.5로 안정화되었으며, 반응시간이 지남에 따라 점진적으로 낮아졌다. 황산염 농도와 산도는 7일 이후 증가하는 것이 관찰되었는데, 이는 황화광물의 산화작용때문인 것으로 판단된다 pH 5와 pH 3에서 용출된 Pb 함량은 반응기 간(1-30일) 동안 뚜렷한 변화가 보이지 않은 반면에 Zn, Cd 및 Cu는 시간이 지남에 따라 용출함량이 증가하는 경향을 보였다. 반응용액 pH 1에서의 용출특성은 Zn 형태(Zn, Cd, 및 Cu)와 Pb 형태(Pb)로 구분되었다. Zn 형태는 시간에 따라 용출함량이 증가되었고, 이는 지속적인 용해작용에 의한 것이다. Pb 형태는 시간에 따라 용출농도가 감소하였으며, 이는 황산염의 용출함량이 높아짐에 따라 용해된 Pb가 앵글레사이트(anglesit)로 침전됨을 지시한다. 높은 황산염 농도는 Fe, Zn, 및 Cd의 높은 용출함량과 밀접한 관련이 있다. 이들 용출실험 결과 Zn과 Cd의 용출과 산도는 광산주변 환경의 지표수와 지하수 수질에 악영향을 주는 요인이 될 수 있다. 용출반응에서 kinetics 문제는 광미가 빗물과 반응하여 유출수에서의 중금속 농도를 증가시킬 수 있는 중요한 요인이 된다.

동전기제염장치에서 발생한 폐액의 재사용을 위한 개선된 처리기술 (Improved Treatment Technique for the Reuse of Waste Solution Generated from a Electrokinetic Decontamination System)

  • 김완석;김승수;김계남;박욱량;문제권
    • 방사성폐기물학회지
    • /
    • 제12권1호
    • /
    • pp.1-6
    • /
    • 2014
  • 우라늄으로 오염된 토양을 복원하기 위해 실규모의 동전기제염장치로 제염하는 과정에서 많은 산폐액이 발생한다. 발생한 산폐액에 CaO를 가해 우라늄수산화물을 침전시켜 여과한 다음, 방사성 폐액을 줄이기 위하여 이 용액을 재사용하였다. 그러나 이 용액을 동전기에 재사용할 경우, 높은 농도의 칼슘 때문에 양극실에서 음극실로 용액이동 속도가 감소하여 여과포의 약화, 전선 부식, 음극면에 산화물 부착 등의 문제점이 발생하였다. 이 문제들을 해결하기 위하여 재생액에 황산을 넣어 $CaSO_4$로 침전시켜 칼슘을 제거하였다. 칼슘이 제거된 재생액을 사용하여 소형 동전기 장치에서 20 일간 토양제염 실험을 수행한 결과는 세척후 토양내 우라늄 잔류 농도가 0.35 Bq/g로 감소하였으며, 이는 증류수 제염한 결과와 유사하게 나타났다.

전토양(田土壤) 인산(燐酸)의 흡수계수(吸收係數)와 Langmuir 최대흡착량(最大吸着量)과의 비교연구(比較硏究) (Comparison between phosphorus absorption coefficient and Langmuir adsorption maximum)

  • 류인수
    • 한국토양비료학회지
    • /
    • 제8권1호
    • /
    • pp.1-17
    • /
    • 1975
  • 야산(野山)의 신개간지토양(新開墾地土壤)과 화산회토양(火山灰土壤)에 있어 특(特)히 문제(問題)가 되는 인산(燐酸)의 시비량(施肥量) 결정(決定)의 한 기준(基準)인 인산흡착력(燐酸吸着力)의 측정방법(測定方法)을 검토(檢討)할 목적(目的)으로 화산회토양(火山灰土壤)과 광질토양(鑛質土壤)(미경지(未耕地)및 기경지토양(旣耕地土壤))에 대(對)하여 인산흡착(燐酸吸着)에 관(關)한 시험(試驗)을 행(行)하였는바 그 결과(結果)를 요약(要約)하면 다음과 같다. 1. Langmuir 흡착식(吸着式)을 이용(利用)하여 구(求)한 인산(燐酸)의 최대흡착량(最大吸着量)은 기경지토양(旣耕地土壤)6.2~32.9, 미경지토양(未耕地土壤) 74.1~90.4, 화산회토양(火山灰土壤) 720~915mg.p/100g 이였다. 2. 인산흡수계수(燐酸吸收係數)는 기경지토양(旣耕地土壤)에서 116~179, 미경지토양(未耕地土壤)에서 161~259, 화산회토양(火山灰土壤)에서 1,098~1,205mg.p/l이며, 인산흡수계수(燐酸吸收係數)/Langmuir 최대흡착량(最大吸着量)의 비(比)는 인산흡착력(燐酸吸着力)이 큰 화산회토양(火山灰土壤)에서 적고 (1.3~1.5) 인산흡착력(燐酸吸着力)이 낮은 토양(土壤)일수록 컷다. (2.2~18.7) 3. 인산흡수계수(燐酸吸收係數)의 측정(測定)은 고농도(高濃度)의 인산용액(燐酸溶液)에서 행(行)하여 지므로 이로서는 석회(石灰) 또는 인산시용(燐酸施用)에 의(依)한 흡착량(吸着量)의 변동(變動)을 명확(明確)히 추정(推定)하기 어려우나, 저농도(低濃度)에서 측정(測定)한 농도별(濃度別) 인산흡착량(燐酸吸着量)및 Langmuir 흡착식(吸着式)을 이용(利用)하여 구(求)한 최대흡착량(最大吸着量)으로서는 흡착량(吸着量)의 변동추정(變動推定)을 분명(分明)히 할수 있었다. 4. 치환성(置換性) 알루미늄을 중화(中和)하기 위한 당량(當量)의 수산화(水酸化)칼슘을 가(加)하여 포장용수량(圃場容水量)에서 40일간(日間) 항온($25{\sim}30^{\circ}C$) 처리(處理)하므로서 치환성(置換性) 알루미늄 함량(含量)이 높은 광질토양(鑛質土壤)에서는 Langmuir 최대흡착량(最大吸着量)이 유의(有意)한 감소(減少)를 보였다. 5. 인산(燐酸)을 처리(處理)하여 50일간(日間) 포장용수량(圃場容水量) 상태에서 항온($25{\sim}30^{\circ}C$) 처리(處理)한 토양(土壤)에 대(對)하여 Langmuir 최대흡착량(最大吸着量)을 측정(測定)한바 최대흡착량(最大吸着量)에 상당(相當)하는 인산(燐酸)의 시용(施用)으로 화산회토양(火山灰土壤)은 25.5 미경지토양(未耕地土壤)은 54.4%, 기경지토양(旣耕地土壤)은 76.2%의 포화율(飽和率)을 나타내었다. 6. 토양(土壤)의 인산흡착량(燐酸吸着量)은 첨가인산(添加燐酸)의 농도(濃度)가 높아짐에 따라 곡선적(曲線的)으로 증가(增加)하여 어느 일정농도(一定濃度)에 이르면 흡착포화점(吸着飽和點)에 달(達)하며 광질토양(鑛質土壤)에서는 100mg.p/l, 화산회토양(火山灰土壤)에서는 1,000mg.p/l의 인산용액(燐酸溶液)으로 측정(測定)되는 인산흡착량(燐酸吸着量)은 Langmuir 최대흡착량(最大吸着量)에 매우 근사(近似)한 값을 나타내므로 이를 토양(土壤)의 인산흡착력(燐酸吸着力)을 나타내는 새로운 지표(指標)로 삼고 포화흡착량(飽和吸着量)이라 정의(定義)하였다. 7. 단일농도(單一濃度)에서 이루어지는 포화흡착량(飽和吸着量)의 측정(測定)으로 여러 농도(濃度)에서 인산(燐酸)의 흡착량(吸着量)을 구(求)하여야 하는 Langmuir 최대흡착량(最大吸着量) 측정(測定)의 번잡성(煩雜性)을 피(避)할 수 있어 이 방법(方法)은 실용적(實用的)인 방법(方法)으로 판단(判斷)되었다.

  • PDF

우리나라 일부 토양에 대한 카드뮴의 토양-물 분배계수 (Soil-Water Partition Coefficients for Cadmium in Some Korean Soils)

  • 옥용식;이옥민;정진호;임수길;김정규
    • 한국토양비료학회지
    • /
    • 제36권4호
    • /
    • pp.200-209
    • /
    • 2003
  • 우리나라의 몇 가지 경작지 토양을 대상으로 하여 카드뮴의 토양-물 분배계수를 측정하였다. 토양에 대한 카드뮴의 흡착은 토양 영구전하에 의한 이온교환 반응과 토양 가변전하에 의한 표면착물 반응의 합으로 표현할 수 있으며, 이때 카드뮴의 분배계수는 pH와 이론적 으로 다음의 상관관계를 갖는다. $log\;K_d=a_0+b_0{\times}pH$ (단, $a_0$$b_0$는 상수). 토양에 대한 카드뮴의 회분형 흡착실험에서 분배계수는 토양의 pH 변화에 따라 정으로 증가하였다. 그러나 pH 3.5 이하 및 pH 8.5 이상에서는 측정한 분배계수가 위의 식으로 예측한 값보다 낮게 나타났다. 이는 산성 조건에서는 알루미늄의 용해가 일어나고, 알칼리 조건에서는 토양 유기물이 용해되어 용액 내 카드뮴의 분배에 영향을 미쳤기 때문으로 판단된다. 각각의 토양에 대한 유기물 함량을 이용 해 표준화한 분배계 수 ($K_{d-om}$)에 의하여 위 식의 상관계수는 $0.52^{**}$에서 $0.70^{**}$으로 상승되어 예측력을 개선할 수 있었다. 또한, 실제 오염토양에서 측정한 분배계수와 표준화한 함수식을 이용하여 예측한 분배계수 사이에는 고도의 유의적인 상관관계 ($r^2=0.68^{**}$)를 보였다.

폐 철광산 주변 비소로 오염된 토양에 대한 연속 세척기법의 적용 (Sequential Washing Techniques for Arsenic-Contaminated Soils near the Abandoned Iron-Mine)

  • 황정성;최상일;한상근
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제10권1호
    • /
    • pp.58-64
    • /
    • 2005
  • 본 연구는 플럭 형성 비소 오염토양에 대한 토양세척기법 적용시 최적의 운전조건을 도출하고자 하였으며, 대상 시료는 D 폐철광산 토양을 선정하였다. 최적의 cut-off size는 전체 토양 중량에 대하여 약 $94\%$ 정도의 분포를 보이는 0.15 mm ($\#100$체)이었다. 수산화나트륨과 염산 모두 비소 제거에 효과적이었고, 진탕비 (토양[g]:세척용액[mL])는 2가지 세척제에 대하여 1:5가 최적 조건임을 알 수 있었다. 토양세척시 형성되는 플럭에 대하여 비소 농도를 파악한 결과, 여타 pH조건에서보다 pH $5\~6$에서 형성된 플럭의 건조 비소 농도가 $990\~1,086\;mg/kg$ dry solids로 높음을 알 수 있었다. 따라서, 세척효율의 향상 여부를 파악하기 위하여 토양세척시 형성되는 플럭의 제거 유무에 따른 연속 토양세척 실험을 수행하였다. 0.2 M염산을 사용하여 플럭을 제거한 토양을 염산 1 M로 세척한 다음 1 M 수산화나트륨으로 연속 세척한 결과, 비소 농도는 약 1.5 mg/kg dry soil을 보였다. 각 단계마다 발생된 세척유출수기 비소 농도는 약 $2\~3\;mg/L$이었으나, 각각의 세척유출수를 혼합하는 경우 비소 농도가 $50\;{\mu}g/L$ 이하로 감소되었는제 이는 비소가 응집${\cdot}$침전으로 제거되는데 유리한 pH조건으로 변환되기 때문인 것으로 판단된다.