Soil-Water Partition Coefficients for Cadmium in Some Korean Soils

우리나라 일부 토양에 대한 카드뮴의 토양-물 분배계수

  • Ok, Yong-Sik (Division of Environmental Sciences and Ecological Engineering, Korea University) ;
  • Lee, Ok-Min (Division of Environmental Sciences and Ecological Engineering, Korea University) ;
  • Jung, Jin-ho (Division of Environmental Sciences and Ecological Engineering, Korea University) ;
  • Lim, Soo-kil (Division of Environmental Sciences and Ecological Engineering, Korea University) ;
  • Kim, Jeong-Gyu (Division of Environmental Sciences and Ecological Engineering, Korea University)
  • 옥용식 (고려대학교 생명환경과학대학 환경생태공학부) ;
  • 이옥민 (고려대학교 생명환경과학대학 환경생태공학부) ;
  • 정진호 (고려대학교 생명환경과학대학 환경생태공학부) ;
  • 임수길 (고려대학교 생명환경과학대학 환경생태공학부) ;
  • 김정규 (고려대학교 생명환경과학대학 환경생태공학부)
  • Received : 2003.07.04
  • Accepted : 2003.07.22
  • Published : 2003.08.30

Abstract

Distribution coefficient ($K_d$) is an universal parameter estimating cadmium partition for a soil-water-crop system in agricultural lands. This study was performed to find some factors affecting soil-water partition coefficients for cadmium in some Korean soils. The distribution coefficients ($K_d$) of cadmium for the 15 series of agricultural soils were measured at quasi-steady state in the pH ranges from 2 to 11. The adsorption data of the selected soils showed a linear relationship between log $K_d$ and pH, which was well agreed with theoretically expected results ; $log\;K_d=0.6339pH+0.5532(r^2=0.70^{**})$. Normalization of the partition coefficients were performed in a range of pH 3.5 ~ 8.5 to minimize adverse effects of Al dissolution, cationic competition, and organic matter dissolution. The $K_d$-om, partition coefficients normalized for organic matter, improved this linearity to the pH of soils. The values of $K_d$-om measured from the field samples were significantly correlated with those of $K_d$ predicted from the sorption-edge experimental data ($r^2=0.68^{**}$).

우리나라의 몇 가지 경작지 토양을 대상으로 하여 카드뮴의 토양-물 분배계수를 측정하였다. 토양에 대한 카드뮴의 흡착은 토양 영구전하에 의한 이온교환 반응과 토양 가변전하에 의한 표면착물 반응의 합으로 표현할 수 있으며, 이때 카드뮴의 분배계수는 pH와 이론적 으로 다음의 상관관계를 갖는다. $log\;K_d=a_0+b_0{\times}pH$ (단, $a_0$$b_0$는 상수). 토양에 대한 카드뮴의 회분형 흡착실험에서 분배계수는 토양의 pH 변화에 따라 정으로 증가하였다. 그러나 pH 3.5 이하 및 pH 8.5 이상에서는 측정한 분배계수가 위의 식으로 예측한 값보다 낮게 나타났다. 이는 산성 조건에서는 알루미늄의 용해가 일어나고, 알칼리 조건에서는 토양 유기물이 용해되어 용액 내 카드뮴의 분배에 영향을 미쳤기 때문으로 판단된다. 각각의 토양에 대한 유기물 함량을 이용 해 표준화한 분배계 수 ($K_{d-om}$)에 의하여 위 식의 상관계수는 $0.52^{**}$에서 $0.70^{**}$으로 상승되어 예측력을 개선할 수 있었다. 또한, 실제 오염토양에서 측정한 분배계수와 표준화한 함수식을 이용하여 예측한 분배계수 사이에는 고도의 유의적인 상관관계 ($r^2=0.68^{**}$)를 보였다.

Keywords

References

  1. Ainsworth, C.C., J.L. Pilon, P.L. Gassman, and W.G. van der Sluys. 1994. Cobalt, cadmium, and lead sorption to hydrous iron oxide : residence time effect. Soil Sci. Soc. Am. J. 58:1615-1623 https://doi.org/10.2136/sssaj1994.03615995005800060005x
  2. Baker, D.E., D.R. Bouldin, H.A. Elliott, and J.R. Miller. 1985. Recommendations for guidelines, p. 3-6. In D.E. Baker et al. (ed.) Criteria and recommendations for land application of sludges in the northeast. Penn. Aghc. Exp. Stn. Bull. 851. The Pennsylvania State University, University Park, Pennsylvania, USA
  3. Carter D.L., M.M. Mortland, and W.D. Kemper. 1986. Specific surface, p. 413-423. In A. Klute et al. (ed.) Methods of soil analysis, part 1. Physical and mineralogical methods. (2nd ed.). Soil Science Society of America Madison, Wisconsin, USA
  4. Chen, H.M., C.R. Zheng, C. Tu, and Z.G. Shen. 2000. Chemical methods and phytoremediation of soil contaminated with heavy metals. Chemosphere 41:229-234 https://doi.org/10.1016/S0045-6535(99)00415-4
  5. Dixon, J.D., and G.N. White. 1997. Soil mineralogy laboratory manual. Dept. of Soil and Crop Sci., Texas A&M Univ. College Station, Texas, USA
  6. Elliott, H.A., M.R. Liberati, and C.P. Huang. 1986 Competitive adsorption of heavy metals by soils. J Environ. Qual. 15:214-219 https://doi.org/10.2134/jeq1986.00472425001500030002x
  7. Horton, M.L. 1995. Recommended soil testing procedures for the Northeastern United States. p. 9-13. Delaware Cooperative Extension. Aghcultural Experimental Station, Delaware, USA
  8. Jenne, E.A. 1968. Controls on Mn, Fe, Co, Ni, Cu and Zn concentrations in soil and water: The significance role of hydrous Mn and Fe oxides. Adv. Chem. Ser. 73:337-387 https://doi.org/10.1021/ba-1968-0073.ch021
  9. Lee, S.Z., H.E. Allen, C.P. Huang, D.L. Sparks, P.F. Sanders, and Q.J.G.M. Peijnenburg. 1996. Predicting soil-water partition coefficients for cadmium. Environ. Sci. Technol 30:3418-3424 https://doi.org/10.1021/es9507933
  10. Lim, J.N. 2000. Taxonomical classification of Korean soils National Institute of Agricultural Science and Technology, Suwon, Korea
  11. Lim, S.K., C.Y. Chung, Y.S. Ok, and J.G. Kim. 2002. Competitive adsorption of Cd and Cu on surface of humic acid extracted from peat. Korean J. SoiI Sci. Fert. 35:344-351
  12. Lothenbach. B., G. Furrer, H. Scharli, and R. Schulin. 1999. Immobilization of zinc and cadmium by montmorillonite compounds: effects of aging and subsequent acidiScation. Environ. Sci. Technol. 32:2945-2952
  13. McLaren, R.G., and D.V. Crawford. 1973. Studies on soil copper. II. The fraction of copper in soils. J. Soil Sci. 24:172-181 https://doi.org/10.1111/j.1365-2389.1973.tb00753.x
  14. National Institute of Agricultural Science and Technology.2000. Methods of soil and plant analysis. Sammi Press, Suwon, Korea
  15. Ok, Y.S. 2003. Empirical and mechanistic approach to adsorption and bioavailability of cadmium in soils and plants: Implications in phytoremediation. Ph.D. Dissertation, Korea University, Seoul, Korea
  16. Ok, Y.S., Y.S. Choi, S.E. Lee, S.K. Lim, N.H. Chung, and J.G. Kim. 2001. Effects of soil component and index ion on the surface charge characteristics of some Korean arable soils. Korean J. Soil Sci. Fert. 34:237-244
  17. Ok, Y.S., S.K. Lim, and J.G. Kim. 2002. Electrochemical properties of soils - principles and applications. Life Sci. Natural Resour. Res. 10:69-84
  18. Park, C.K., Y.H. Cho, and P.S. Hahn. 1997. Sorption reactions for metals ions onto domestic granites. J. Korea Solid Wastes Engin. Soc. 14:412-420
  19. Park, S.W., P.S. Hahn, and H.H. Park. 1994. The application of surface complexation model to radionuclide migration in the subsurface environments. J. Korean Nucl. Soc. 11:1-7
  20. Soil Survey Laboratory Staff. 1992. Soil survey laboratory manual. Soil Surv. Invest. Reps. 42. USDA-SCS, Washington, DC, USA
  21. Thomas, G.W. 1996. Soil pH and soil acidity, p. 475-490. In D.L. Sparks et al. (ed.) Methods of soil analysis, Part 3. Chemical methods.. Soil Science Society of America, Madison, Wisconsin, USA
  22. Whittig L.D. and W.R. Alladice. 1986. X-ray diffraction techniques, p. 331-362. In A. Klute et al. (ed.) Methods of soil analysis, Part 1. Physical and mineralogical methods. (2nd ed.). Soil Science Society of America, Madison, Wisconsin, USA
  23. Zachara, J.M., S.C. Smith, C.T. Resch, and C.E. Cowan. 1992. Cadmium sorption to soil separates containing layer silicates and iron and aluminum oxides. Soil Sci. Soc. Am. J. 56:1074-1084 https://doi.org/10.2136/sssaj1992.03615995005600040012x