• Title/Summary/Keyword: 토양오염기준

Search Result 397, Processing Time 0.025 seconds

Geoenvironmental Influence on the Recycled Soil from Demolition Concrete Structures for using in Low Landfilling (건설폐토석의 성토에 따른 지반환경적 영향)

  • Shin, Eun-Chul;Kang, Jeong-Ku;Ahn, Min-Hee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.12
    • /
    • pp.21-30
    • /
    • 2011
  • The recycled soil that is proceeded from demolition concrete structures was analyzed by the methods of the physical and mechanical tests of soil and TCLP test to use the soil in low landfilling for the construction of an industrial complex. The laboratory test for diffusion of alkali ion in soil mass was analyzed by the methods of XRF and ICP. The fish toxicity test was also conducted to find an environmental influence. The recycled soil through the laboratory test satisfied the engineering property for low landfilling and the criteria of soil contamination. However, the solution which producted by 1:1 ratio of recycled soil and water contained the high pH concentration by alkali ion. The calcium hydroxide solution by CSH cement paste was estimated as the main reason why pH concentration is increased more than 9.0. The high pH concentration in recycled soils causes a toxicity to the livability of fishes. A diffusion area of pH concentration in the ground was analyzed by the Visual Modflow Ver. 2009 program based on geotechnical investigation. The high pH concentration in the recycled soils can be remained as high value due to cement paste in the long term period. Therefore, in the early stage of landfilling work, the mixing with the weathered granite soil is necessary to control the pH concentration.

Evaluation of Characteristics of Sludge generated from Active Treatment System of Mine Drainage (광산배수의 적극적 처리시설에서 발생하는 슬러지 특성 평가)

  • Jung-Eun Kim;Won Hyun Ji
    • Economic and Environmental Geology
    • /
    • v.56 no.4
    • /
    • pp.409-419
    • /
    • 2023
  • Acid mine drainage(AMD) treatment is classified as both passive and active treatment. During the treatment, about 5,000 tons of neutralization sludge is generated as a by-product per year in Korea. This study was conducted to evaluate the characteristics of sludge generated from physico·chemical treatment processes as an active treatment from 5 different sources (D, H, S, T, Y) and the possibility of the sludges being recycled. The sludges have a pH range of 5.86 ~ pH 7.89, and a water content range of 51% ~ 82%. Most of particle sizes were less than 25 ㎛. In analysis of inorganic elements, the concentration of Al, Fe, and Mn were between 1,189 mg/kg ~ 129,344 mg/kg, 106,132 mg/kg ~ 338,011 mg/kg, and 3,472 mg/kg ~ 11,743 mg/kg, respectively. The concentration of As and Zn in sludge-T, Cd in sludge-D, Ni in sludge-H, Zn in sludge-S, and Cd in sludge-Y exceeded the soil contamination standards of Korea. The results from 2 separate kinds of leaching test, the Korea Standard Leaching Test(KSLT) and Toxicity Characteristic Leaching Procedure(TCLP), showed that all the sludges met the Korea groundwater standards. From the XRD and SEM-EDS analysis, the peaks of calcite and quartz were found in the sludges. The sludge also had a high proportion of Fe and O, and the majority of the composition was amorphous iron hydroxide.

Improvement of analytical methods for arsenic in soil using ICP-AES (ICP-AES를 이용한 토양 시료 중 비소 분석 방법 개선)

  • Lee, Hong-gil;Kim, Ji In;Kim, Rog-young;Ko, Hyungwook;Kim, Tae Seung;Yoon, Jeong Ki
    • Analytical Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.409-416
    • /
    • 2015
  • ICP-AES has been used in many laboratories due to the advantages of wide calibration range and multi-element analysis, but it may give erroneous results and suffer from spectral interference due to the large number of emission lines associated with each element. In this study, certified reference materials (CRMs) and field samples were analyzed by ICP-AES and HG-AAS according to the official Korean testing method for soil pollution to investigate analytical problems. The applicability of HG-ICP-AES was also tested as an alternative method. HG-AAS showed good accuracies (90.8~106.3%) in all CRMs, while ICP-AES deviated from the desired range in CRMs with low arsenic and high Fe/Al. The accuracy in CRM030 was estimated as below 39% at the wavelength of 193.696 nm by ICP-AES. Significant partial overlaps and sloping background interferences were observed near to 193.696 nm with the presence of 50 mg/L Fe and Al. Most CRMs were quantified with few or no interferences of Fe and Al at 188.980 nm. ICP-AES properly assessed low and high level arsenic for field samples, at 188.980 nm and 193.696 nm, respectively. The importance of the choice of measurement wavelengths corresponding to relative arsenic level should be noted. Because interferences were affected by the sample matrix, operation conditions and instrument figures, the analysts were required to consider spectral interferences and compare the analytical performance of the recommended wavelengths. HG-ICP-AES was evaluated as a suitable alternative method for ICP-AES due to improvement of the detection limit, wide calibration ranges, and reduced spectral interferences by HG.

The continuous application effect of the food waste composts on the cultivated upland soils and plants (밭에서 음식물류폐기물 활용 퇴비의 연용이 토양 및 작물에 미치는 영향)

  • Kwon, Soon-Ik;So, Kyu-Ho;Hong, Seung-Gil;Kim, Gun-Yeob;Seong, Ki-Seog;Park, Woo-Kyun;Kim, Kwon-Rae;Lee, Deog-Bae;Jung, Kwang-Yong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.3
    • /
    • pp.71-81
    • /
    • 2009
  • Food waste has been actively used as a composting material in order to reduce the environmental pollution load and to enhance the recycling of resources. In this study, the longterm effects of continuous application of food waste compost to soils on both the crop production and the soil properties were examined to ensure the safety of food waste compost in agricultural use. In addition, we collected the preliminary data for establishing standard application rate of food waste compost for agricultural utilization. Based on conventional nitrogen application rate of chemical fertilizer for crop cultivation, pig manure compost $(24g\;N\;kg^{-1}$, $8g\;P_2O_5\;kg^{-1}$, and $10.4g\;K_2O\;kg^{-1})$ and food waste compost ($20g\;N\;kg^{-1}$, $20.1g\;P_2O_5\;kg^{-1}$, and $6.5g\;K_2O\;kg^{-1}$) were applied to the upland soil in $2{\times}2{\times}2m$ lysimeter in which lettuce (Lactuca sativa var. crispa), Chinese cabbage (Brassica campestris subsp. napus var. pekinensis), red pepper (Capsicum annuum), and potato (Solanum tuberosum) were grown continuously. The crops grown in soils to which food waste compost applied showed better growth responses than the control, whereas some variations were observed in the crops grown in chemical fertilizer treated soils. Continuous application of food waste compost increased the contents of organic matter, nitrogen, and phosphorus, which resulted in improving soil aeration.

Distributions and Pollution History of Heavy Metals in Nakdong Estuary Sediments (낙동강 하구역 퇴적물 중금속의 분포와 오염의 역사 추정)

  • Cho, Jin-Hyung;Park, Nam-Joon;Kim, Kee-Hyun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.4
    • /
    • pp.285-294
    • /
    • 2000
  • In order to determine the horizontal and vertical distributions of metals and prospect the recent metal pollution history in Nakdong Estuary, we took surface and core sediments. Maximum value of organic matter occurs at the upstream site located 4 km from Nakdong barrage, and the concentration of trace metals (Zn, Cu, and Pb etc.) decrease seaward in the estuary. The sedimentation rates, based on $^{210}$Pb$_{ex}$ and $^{137}$Cs activities, were 0.34 cm/yr in inside of barrage (core 1) and 0.25 cm/yr in Changrim (core 4). Sediment mixing layer does not exist in core 1, where anoxic condition is known to be prevail. The topmost sediment layer of core 4 (<3.5 cm) is severely mixed. At sites 1 and 4, concentrations of Cu slowly increased during the period of 1920-1970, rapidly increased during 1970-1990, and followed by slight decrease after 1990. Zn contents increased in early 1960s and peaked in 1993, and followed by decrease after 1990s. Pb has increased continuously since early 1970s. At the downstream of the barrage, Cu and Zn have increased in the topmost layer. The trend of increase of Cu is evident after 1950 (11 cm in sediment depth). Overall trend of heavy metal concentration clearly indicates the pollution has been increasing after the construction of the barrage.

  • PDF

Studies on Pollutant Concentrations in Ground Water and Their Behavior in Soils , Cheju Island. I. Changes in Nitrate-nitrogen Concentration in Ground-water near Hotel complexes and Business district During the Period form 1987 to 1992 (제주도 지하수중 오염물질의 농도와 토양중 그의 행동에 관한 연구 1. 호텔 및 상가주변에서의 지하수중 $NO_3-N$의 농도 변화 (1987-1992))

  • Hyun, Hae-Nam;Oh, Sang-Sil;Koh, Seung-Hak
    • Korean Journal of Environmental Agriculture
    • /
    • v.13 no.1
    • /
    • pp.19-30
    • /
    • 1994
  • This study was conducted to investigate the degree of ground water pollution used for drinking water in Cheju Island. Samples were collected monthly from 31 wells of 10 divided areas and were analyzed for $NO_3-N$, pH, $SO_4$, Cl and hardness from 1987 to 1992. $NO_3-N$ concentrations in the samples, with the exception of sample No.23, did not exceed the standard concentration of drinking-water(10mg/l). $NO_3-N$ concentrations at area 10, unpolluted area, ranged from <1.0 mg/l to just over 1.2 mg/l. However, samples from the business district of the area 8 showed the concentrations ranging from 5 mg/l in 1987 to 8.l mg/l in 1992 with a mean of 6.8 mg/l, about 5 times higher than those from the area 10. $NO_3-N$ concentration in sample No. 23 increased from 4 mg/l in 1987 to 12.6 mg/l in 1991. Average rate of increase in $NO_3-N$ in samples of No. 1, 2, 4, and 8 at area 8 was about 1.2mg/l per year in the study period. The ground water at area 1, 2, 3, 4, 5, 6, and 7 showed in the range of pH 7 to 8.1, being similar to area 10. However, pH at area 8 was in the range of 6.6 to 7.3, being lower than that in the other areas. Hardness at area 1, 2, 3, 4, 5, and 6 were in the range of 30 to 80 mg/l, being higher than that at area 10. Those at area 8 were the highest among all the other areas tested. The results of this study suggest that $NO_3-N$ contamination in ground water could be a problem at hotel complexes and business district in Cheju Island.

  • PDF

Concentrations of the Pollutants in Ground Water and their Behavior in Soils in Cheju Island;II. Nitrate-nitrogen concentration and tis relation to other ions in ground water near the district of pig arming complex in the northwest region (제주도 지하수중 오염물질의 농도와 토양중 그의 행동에 관한 연구;Ⅱ. 서북부지역 양돈단지 주변 지하수중의 $NO_3-N$ 농도와 다른 이온과의 관계)

  • Hyun, Hae-Nam;Koh, Seung-Hak;Oh, Sang-Sil
    • Korean Journal of Environmental Agriculture
    • /
    • v.13 no.2
    • /
    • pp.151-159
    • /
    • 1994
  • This study was conducted to investigate the $NO_3-N$ concentration, the relationship between $NO_3-N$ and other ions, and patterns of ions in ground water used as drinking water in Cheju Island. Samples were collected from 19 wells in the northwest region, near the district of poultry complex, and 9 wells in the northeast region. In the northwest region, $NO_3-N$ concentrations in D-14 and D-202 wells near the pig farming facilities were 10.95 and 13.1 mg/L, respectively, exceeding the standard concentration of drinking water. The concentration in D-65, D-35, and D-120 wells were slightly lower than the standard concentration. However, $NO_3-N$ concentrations in the wells in the northeast region were lower than 3mg/L. In wells in the northwest region, $NO_3-N$ concentrations were negatively correlated with pH and positively correlated with $Ca^{++}$, $Mg^{++}$, $Na^+$ $Cl^-$, $SO_4^{--}$, and $Cl^-/HCO_3^-$. However, in the northeast region, they were not related with pH and the ions. The chemical compositions in D-65, D-35, and D-41 wells showed higher concentrations of $Ca^{++}$, $Mg^{++}$, $Na^+$, $Cl^-$, $NO_3-N$ and $SO_4^{--}$ than the unpolluted D-42 well. These results suggest that ground water near the pig farming complex was polluted by pig farming waste in the northwest region.

  • PDF

Effect of Human Follicular Fluid and Bovine Oviductal Tissue Extract on the Mouse Oocyte-Cumulus Complex (사람 난포액과 소의 수란관 조직추출액이 생쥐 난구세포에 미치는 영향)

  • 홍민정;김지수;심명선;김해권
    • Development and Reproduction
    • /
    • v.6 no.2
    • /
    • pp.97-104
    • /
    • 2002
  • In most mammals, mature oocyte-cumulus complexer(OCCs) ovulate into the oviduct where fertilization by sperm takes place. However, the complex that fail to fertilize eventually undergoes degeneration while they reside in the oviduct. Yet there is no blown mechanism how both oocyte and cumulus cells degenerate. Using human follicular fluid (hFF), bovine oviductal tissue extract (BOX) and mouse OCC, the present study aimed to find how the oviduct influence the viability of the oocyte and cumulus cells in vitro. There was no difference of oocyte maturation rate between the control and BOX-treated groups. However, there was a significant difference in the survival of cumulus cells between two groups. Cumulus cells cultured in the presence of hFF alone underwent initially expansion and then they formed monolayer in the culture dish. Even after 72 hr, they proliferated well and showed fibroblast-like morphology. Cumulus cells cultured in the presence of both hFF and BOX also expanded after 24 hr, however, after 72 hr culture, they eventually detached and degenerated. Cumulus cells cultured in the BOX alone gave a similar drastic result. When the cumulus cells cultured in the presence of BOX were stained with DAPI, their nuclei showed partial condensation and fragmentation. After detailed analysis of these cells by TUNEL assay, many nuclei of them exhibited well stained spots indicating the signs of apoptosis. Based upon these observations, it is suggested that BOX might possess a factor that leads mouse cumulus cells to undergo apoptosis in vitro.

  • PDF

An Investigation of the Sources of Nitrate Contamination in the Kyonggi Province Groundwater by Isotope Ratios Analysis of Nitrogen (질소 동위 원소 분석을 이용한 경기도 지역 지하수 중 질산태 질소 오염원 구명)

  • Yoo, Sun-Ho;Choi, Woo-Jung;Han, Gwang Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.1
    • /
    • pp.47-56
    • /
    • 1999
  • $^{15}N$-Isotope concentrations of groundwater from l4 wells with different land-use types in Kyonggi Province were measured to investigate the nitrate contamination sources. Water samples were collected monthly from January to December 1997 and analyzed for pH. PC, anions (fluoride, chloride, nitrate, sulfate, inorganic phosphate, and bicarbonate), and canons (calcium, magnesium, potassium, and sodium). For the analysis of the $^{15}N/^{14}N$ ratio as ${\delta}^{15}N$, $N_2$ samples were prepared through Kjeldahl-Rittenberg method and were analyzed using an isotope ratio mass spectrometer (VG Optima IRMS). Reproducibility of the method and precision of the IRMS were below 1.0‰ and 0.1‰, respectively. The ionic composition of each groundwater sample was only slightly different according to the land-use type. The nitrate concentrations of groundwater in cropland or livestock farming areas were higher than those in the residential area. The percentages of nitrate to total anions of groundwater samples from the livestock farming area were higher than those of other areas. The ${\delta}^{15}N$ values of ammonium sulfate, urea, groundwater sample in the non-contaminated area, and water from the animal manure septic tank were -2.7, 1.4, 5.5, and 27.2‰, respectively. Based on the ${\delta}^{15}N$ values, the sources of nitrate could be classified as originated from chemical fertilizers with ${\delta}^{15}N$ values below 5% and as from animal manure or municipal waste with ${\delta}^{15}N$ values over 10‰. In most cases, contamination sources investigated from ${\delta}^{15}N$ values of groundwater samples were correlated with the specific sources according to the land-use types. However, some ${\delta}^{15}N$ values did not matched the apparent land-use types, and there were seasonal variations of ${\delta}^{15}N$ values within the same well. These results suggest that the groundwater quality was affected by two or more contamination sources and the contribution of each source to the groundwater quality varied depending on the sampling season.

  • PDF

Effect of Cropping System and Application of Cattle Slurry on Forage Production and Environmental Pollution in Paddy Land (논에서 경작형태와 우분액비 시용이 사초생산성 및 환경오염에 미치는 영향)

  • Choi, Ki-Choon;Na, Sang-Pil;Kim, Won-Ho;Choi, Gi-Jun;Kim, Young-Chul;Kim, Myeong-Hwa;Lee, Sang-Lak;Kim, Da-Hye;Yook, Wan-Bang
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.32 no.3
    • /
    • pp.309-316
    • /
    • 2012
  • This study was performed to investigate the effects of forage cropping system and cattle slurry on productivity of whole crop rice, whole crop barley and Sorghum-Sudangrass hybrid and environmental pollution in paddy land. Forage cropping system used in this study was consisted of double-cropping whole crop barley followed by whole crop rice applied with cattle slurry (DWBRC) and double-cropping whole crop barley followed by Sorghum-Sudangrass hybrid applied with cattle slurry (DSSBC). The field experiments were conducted on the clay loam at Backsanmyun, Kimje, Chunlabukdo province in Korea for three years (May 2006 to Apr. 2009). This study was arranged in completely randomized design with three replicates. The field had been sown with whole crop rice 'Nampyung', Sorghum-Sudangrass hybrid 'Sordan79' and whole crop barley 'Younyang'. The yields of whole crop barley in DWBRC and DSSBC were 7,515 kg/ha and 8,515 kg/ha, respectively. The yields of whole crop barley in DSSBC significantly increased as compared with that of DWBRC (p<0.05). The contents of crude protein, neutral detergent fiber (NDF), acid detergent fiber (ADF), total digestible nutrient (TDN) of whole crop barley in DWBRC were not difference as compared with those of DSSBC. The pH, and contents of total nitrogen and organic matter in soil samples collected at the end of the experiment increased as compared with those at the beginning of the experiment (p<0.05). However, The content of phosphate in DWBRC was no difference as compared with DSSBC. In addition, after the end of experiment, the concentrations of exchangeable cations (Ca, Na, Mg and K) in soil samples collected at the end of the experiment were remarkably higher than those at the beginning of the experiment (p<0.05). The concentrations of $NH_4$-N, $NO_3$-N, $PO_4$-P, Cl, Ca, K, Mg and Na in leaching water were hardly influenced by the cropping system and application of cattle slurry.