• Title/Summary/Keyword: 토양수분퍼텐셜

Search Result 11, Processing Time 0.029 seconds

Application of Analysis Models on Soil Water Retention Characteristics in Anthropogenic Soil (인위적으로 변경된 토양에서의 수분보유특성 해석 모형의 적용)

  • Hur, Seung-Oh;Jeon, Sang-Ho;Han, Kyung-Hwa;Jo, Hee-Rae;Sonn, Yeon-Kyu;Ha, Sang-Keun;Kim, Jeong-Gyu;Kim, Nam-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.823-827
    • /
    • 2010
  • This study was conducted to assess the propriety of models for soil water characteristics estimation in anthropogenic soil through the measurement of soil water content and soil water matric potential. Soil profile was characterized with four different soil layers. Soil texture was loamy sand for the first soil layer (from soil surface to 30 cm soil depth), sand for the second (30~70 cm soil depth) and the third soil layers (70~120 cm soil depth), and sandy loam for the fourth soil layer (120 cm < soil depth). Soil water retention curve (SWRC), the relation between soil water content and soil water matric potential, took a similar trend between different layers except the layer of below 120 cm soil depth. The estimation of SWRC and air entry value was better in van Genuchten model by analytical method than in Brooks-Corey model with power function. Therefore, it could be concluded that van Genuchten model is more desirable than Brook-Corey model for estimating soil water characteristics of anthropogenic soil accumulated with saprolite.

Feasibility Test on Automatic Control of Soil Water Potential Using a Portable Irrigation Controller with an Electrical Resistance-based Watermark Sensor (전기저항식 워터마크센서기반 소형 관수장치의 토양 수분퍼텐셜 자동제어 효용성 평가)

  • Kim, Hak-Jin;Roh, Mi-Young;Lee, Dong-Hoon;Jeon, Sang-Ho;Hur, Seung-Oh;Choi, Jin-Yong;Chung, Sun-Ok;Rhee, Joong-Yong
    • Journal of Bio-Environment Control
    • /
    • v.20 no.2
    • /
    • pp.93-100
    • /
    • 2011
  • Maintenance of adequate soil water potential during the period of crop growth is necessary to support optimum plant growth and yields. A better understanding of soil water movement within and below the rooting zone can facilitate optimal irrigation scheduling aimed at minimizing the adverse effects of water stress on crop growth and development and the leaching of water below the root zone which can have adverse environmental effects. The objective of this study was to evaluate the feasibility of using a portable irrigation controller with an Watermark sensor for the cultivation of drip-irrigated vegetable crops in a greenhouse. The control capability of the irrigation controller for a soil water potential of -20 kPa was evaluated under summer conditions by cultivating 45-day-old tomato plants grown in three differently textured soils (sandy loam, loam, and loamy sands). Water contents through each soil profile were continuously monitored using three Sentek probes, each consisting of three capacitance sensors at 10, 20, and 30 cm depths. Even though a repeatable cycling of soil water potential occurred for the potential treatment, the lower limit of the Watermark (about 0 kPa) obtained in this study presented a limitation of using the Watermark sensor for optimal irrigation of tomato plants where -20 kPa was used as a point for triggering irrigations. This problem might be related to the slow response time and inadequate soil-sensor interface of the Watermark sensor as compared to a porous and ceramic cup-based tensiometer with a sensitive pressure transducer. In addition, the irrigation time of 50 to 60 min at each of the irrigation operation gave a rapid drop of the potential to zero, resulting in over irrigation of tomatoes. There were differences in water content among the three different soil types under the variable rate irrigation, showing a range of water contents of 16 to 24%, 17 to 28%, and 24 to 32% for loamy sand, sandy loam, and loam soils, respectively. The greatest rate increase in water content was observed in the top of 10 cm depth of sandy loam soil within almost 60 min from the start of irrigation.

Effects of Soil Water Potential on the Moisture Injury of Rubus coreanus Miq. and Soil Properties (토양수분퍼텐셜이 복분자 습해와 토양특성에 미치는 영향)

  • Ahn, Byung-Koo;Kim, Kab-Cheol;Kim, Dae-Hyanf;Lee, Jin-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.168-175
    • /
    • 2011
  • This study was conducted to examine the impacts of different soil water potentials on environmental soil properties related to the moisture injury of Korean raspberry (Rubus coreanus Miq.). Soil water potential in the plastic film house plots was differentiated from -5 to -40 kPa. Soils in the plots contained 5.6% of plant available water. Increasing soil water contents based on the changes in water potential increased soil pH and exchangeable $Ca^{2+}$ content and decreased exchangeable $K^+$ and total N contents. It also declined soil organic matter content at 9 days after water treatments. Relationship between water potential and soil water content was given as an exponential equation, y = 96.534 - 20.28In(x). In particular, when the water potential was higher than -20 kPa (27.5% of soil moisture content), it decreased chlorophyll content in the raspberry leaves, inhibited N uptake by the plant, and increased phosphorus content with increasing days after water treatment. Also, as the 7 days after water treatment at higher than -20 kPa of water potential, the root activity of the plant was significantly decreased, and trunk (top)/root (T/R) ratio of the plant markedly declined until 9 days after water supply. Carbohydrate contents in the raspberry plant leaves and roots at dormant stage were the lowest at -5 and -10 kPa of water potential plots, and it may cause winter injury to the plant.

Effect of the Pretreatment by Thermal Hydrolysis on Biochemical Methane Potential of Piggery Sludge (열가수분해 전처리가 양돈 슬러지의 메탄생산퍼텐셜에 미치는 영향)

  • Kim, Seung-Hwan;Kim, Ho;Kim, Chang-Hyun;Yoon, Young-Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.524-531
    • /
    • 2012
  • The objective of this study was to investigate the organic solubilization (SCOD) and improvement of methane production for pig slurry by thermal hydrolysis. A sludge cake was pretreated by thermal hydrolysis at different reaction temperatures (200, 220, 250, $270^{\circ}C$). Ultimate methane potential (Bu) was determined at several substrate and inoculum (S/I) ratios (1:9, 3:7, 5:5, 7:3 in volume ratio) by biochemical methane potential (BMP) assay for 73 days. Pig slurry SCOD were obtained with 98.4~98.9% at the reaction temperature of $200{\sim}270^{\circ}C$. Theoretical methane potentials ($B_{th}$) of thermal hydrolysates at the reaction temperature of $200^{\circ}C$, $220^{\circ}C$, $250^{\circ}C$, $270^{\circ}C$ were 0.631, 0.634, 0.705, $0.748Nm^3\;kg^{-1}-VS_{added}$, respectively. $B_u$ of $200^{\circ}C$ thermal hydrolysate were decreased from $0.197Nm^3\;kg^{-1}-VS_{added}$ to $0.111Nm^3\;kg^{-1}-VS_{added}$ with the changes of S/I ratio from 1:9 to 7:3, and also $B_u$ of different thermal hydrolysates ($220^{\circ}C$, $250^{\circ}C$, $270^{\circ}C$) showed same tendency to $B_u$ of $200^{\circ}C$ thermal hydrolysate according to the changes of S/I ratio. Anaerobic biodegradability ($B_u/B_{th}$) of $200^{\circ}C$ thermal hydrolysate at different S/I ratios was decreased from 32.2% for S/I ratio of 1:9 to 17.6% for S/I ratio of 7:3. $B_u/B_{th}$ of $220^{\circ}C$, $250^{\circ}C$, and $270^{\circ}C$ thermal hydrolysat were decreased from 36.4% to 9.6%, from 31.3% to 0.8%, and from 26.6% to 0.8%, respectively, with the S/I ratio change, respectively. In this study, the rise of thermal reaction temperature caused the decrease of anaerobic digestibility and methane production while organic materials of pig slurry were more solubilized.

Comparison of Wetting and Drying Characteristics in Differently Textured Soils under Drip Irrigation (점적관개 시 토성별 습윤.건조 특성 비교)

  • Kim, Hak-Jin;Son, Dong-Wook;Hur, Seung-Oh;Roh, Mi-Young;Jung, Ki-Yuol;Park, Jong-Min;Rhee, Joong-Yong;Lee, Dong-Hoon
    • Journal of Bio-Environment Control
    • /
    • v.18 no.4
    • /
    • pp.309-315
    • /
    • 2009
  • Maintenance of adequate soil water content during the period of crop growth is necessary to support optimum plant growth and yields. A better understanding of soil water movement for precision irrigation would allow efficient supply of water to crops, thereby resulting in minimization of water drainage and contamination of ground water. This research reports on the characterization of spatial and temporal variations in water contents through three different textured soils, such as loam, sandy loam, and loamy sand, when water is applied on the soil surface using an one-line drip irrigation system and the soils are dried after the irrigation stops, respectively. Water contents through each soil profile were continuously monitored using three Sentek probes, each consisting of three capacitance sensors at 10, 20, and 30cm depths. Spatial variability in water content for each soil type was strongly influenced by soil textural class. There were big differences in wetting pattern and the rate of downward movement between loam and sandy loam soils, showing that the loam soil had a wider wetting pattern and a slower rate of downward movement than did the sandy loam soil. The wetting pattern in loamy sand soil was not apparent due to a low variability in water content (< 10%) by a lower-water holding capacity as compared to those measured in the loam and sandy loam soils, implying that the rate of water drainage below a depth of 30cm was high. When soils were dried, there were highly exponential relationships between water content and time elapsed after irrigation stops ($r^2$${\geq}$0.98). It was estimated that equilibrium moisture contents for loam, sandy loam, and loamy sand soils would be 17.6%, 6.2%, and 4.2%, respectively.

Correction Method of Anaerobic Organic Biodegradability by Batch Anaerobic Digestion (회분식 혐기소화에 의한 혐기적 유기물 분해율의 보정 방법)

  • Kim, Seung-Hwan;Oh, Seung-Yong;Kim, Chang-Hyun;Yoon, Young-Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1086-1093
    • /
    • 2012
  • This research was carried out to develop the correction method of VDI4630 method improving accuracy, and investigated the effects of carbonate ion ($CO_3{^{2-}}$) and reactant water ($H_2O$) on anaerobic organic biodegradability in VDI4630 method. Pig blood, pig intestine residue, pig digestive tract content, and cattle rumen content were experimented as waste biomasses. Chemical formulas of pig blood, pig intestine residue, pig digestive tract content, and cattle rumen content were $C_{3.78}H_{8.39}O_{1.46}N_1S_{0.01}$, $C_{9.69}H_{15.42}O_{2.85}N_1S_{0.03}$, $C_{25.17}H_{43.32}O_{15.04}N_1$, $C_{27.23}H_{42.38}O_{15.93}N_1S_{0.11}$, respectively. And amount of reactant moisture for the anaerobic degradation of organic materials were 0.336, 0.485, 0.227, 0.266 mol, respectively. In pig blood, pig intestine residue, pig digestive tract content, and cattle rumen content, anaerobic organic biodegradability presented as $B_u/B_{th}$ were 82.3, 81.5, 70.8, and 66.1%, and anaerobic organic biodegradability (AB) by VDI4630 method were 72.2, 87.8, 74.2, 62.0%, and that were significantly different with anaerobic organic biodegradability presented as $B_u/B_{th}$. The effects of carbonate ion and reactant water on anaerobic organic biodegradability were not significant, But Accuracy of anaerobic organic degradability was expected to able to be improved by the correction method of VDI4630 considering the carbonate ion at digestate and the reactant water quantified.

Characteristics of a Reclaimed Tidal Soil for Effective Resalization at Saemangum and Youngsan-River

  • Chung, Doug-Young;Kim, Hyejin;Park, Misuk;Lee, Sang-Eun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1222-1229
    • /
    • 2012
  • The total area of a reclaimed tidal soil distributed on the south-west coast is approximately 156,600 ha, and the soil contains high contents of sand and silt as well as highly saline. Most of the reclaimed tidal soils are used as a paddy due to bad permeability and high groundwater table, resulting in easy accumulation of salts on the soil surface by capillary rise. Therefore, resalinization may occur because of rise of groundwater table after desalinization. The researches related to the reclaimed tidal soil mainly focused on desalinazation while most of the researches completed were limited to yields of crop based on desalinazation. pH of old reclaimed tidal soil is neutral or less than 7 while that of newly developed reclaimed tidal soils is greater than 7, that cause N-fertilizer to be volatile as ammonia. Thus, the physical and chemical properties should be investigated to be used as an arable upland instead of a paddy soil due to change in government policy. We need to develop measures to make soils grow crops normally by identifying problems related to reclaimed tidal soils.

The Simulation of Pore Size Distribution from Unsaturated Hydraulic Conductivity Data Using the Hydraulic Functions (토양 수리학적 함수를 이용한 불포화 수리전도도로부터 공극크기분포의 모사)

  • Yoon, Young-Man;Kim, Jeong-Gyu;Shin, Kook-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.4
    • /
    • pp.407-414
    • /
    • 2010
  • Until now, the pore size distribution, PSD, of soil profile has been calculated from soil moisture characteristic data by water release method or mercury porosimetry using the capillary rise equation. But the current methods are often difficult to use and time consuming. Thus, in this work, theoretical framework for an easy and fast technique was suggested to estimate the PSD from unsaturated hydraulic conductivity data in an undisturbed field soil profile. In this study, unsaturated hydraulic conductivity data were collected and simulated by the variation of soil parameters in the given boundary conditions (Brooks and Corey soil parameters, ${\alpha}_{BC}=1-5L^{-1}$, b = 1 - 10; van Genuchten soil parameters, ${\alpha}_{VG}=0.001-1.0L^{-1}$, m = 0.1 - 0.9). Then, $K_s$ (1.0 cm $h^{-1})$ was used as the fixed input parameter for the simulation of each models. The PSDs were estimated from the collected K(h) data by model simulation. In the simulation of Brooks-Corey parameter, the saturated hydraulic conductivity, $K_s$, played a role of scaling factor for unsaturated hydraulic conductivity, K(h) Changes of parameter b explained the shape of PSD curve of soil intimately, and a ${\alpha}_{BC}$ affected on the sensitivity of PSD curve. In the case of van Genuchten model, $K_s$ and ${\alpha}_{VG}$ played the role of scaling factor for a vertical axis and a horizontal axis, respectively. Parameter m described the shape of PSD curve and K(h) systematically. This study suggests that the new theoretical technique can be applied to the in situ prediction of PSD in undisturbed field soil.

Stomatal Closure due to Water Stress in Plants (수분 스트레스에 의한 식물의 기공 닫힘)

  • Joon Sang Lee
    • Journal of Life Science
    • /
    • v.34 no.6
    • /
    • pp.426-433
    • /
    • 2024
  • The environmental stress that plants are most susceptible to is water stress. Abscisic acid (ABA) is a plant hormone synthesized by plants to counteract environmental stress. The role of stomata in plants is to allow the synthesis of sucrose by absorbing CO2, which greatly affects photosynthetic activity. In addition, stomata are pathways for transpiration, which releases H2O and help establish a water potential gradient that allows plant roots to continuously absorb water and inorganic substances from the soil. Plants have a mechanism to minimize water loss by closing their stomata when exposed to water-stressed environments. The most well-studied hypothesis concerning the mechanism of stomatal closure is the response to water stress. When a plant receives sufficient water, its stomata open during the day and close at night due to its circadian rhythm. In addition, stomatal closure occurs when the concentration of CO2 in the intercellular space increases. However, the mechanism of stomatal closure due to circadian rhythm and increased CO2 concentration in the intercellular space is not well understood. When plants undergo water stress, the increased concentration of ABA in the guard cell cytoplasm induces an increase in Ca2+ concentration, resulting in cytoplasmic depolarization. As a result, the outward K+-channel of the tonoplast and the slow-type anion channels SLAC1 and SLAH3 are activated, releasing K+, Cl-, and malate2-, causing the stomata to close. Therefore, in this paper, the mechanism of stomatal closure caused by water stress was investigated.

Effects of Mycorrhizal Inoculation on Plant Growth and N Metabolites in Relation to drought-stress Tolerance (Mycorrhiza 접종이 가뭄 스트레스하의 식물성장과 질소 대사산물에 미치는 영향)

  • Lee, Bok-Rye;Jung, Woo-Jin;Kim, Dae-Hyun;Kim, Kil-Yong;Shon, Bo-Kyoon;Kim, Tae-Hwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.5
    • /
    • pp.314-325
    • /
    • 2002
  • The effects of arbuscular mycorrhizal (AM) fungus (Glomus intraradices) on plant growth and N metabolic responses were examined in perennial ryegrass plants exposed to drought-stressed or well-watered condition. Mycorrhizal inoculation improved significantly leaf water potential, dry mass and P content. Drought stress increased significantly nitrate concentration in roots where the increase was much less in AM than non-AM. Drought stress decreased the concentration of soluble proteins in non-AM shoots, whereas non-significant decline occurred in AM shoots even under drought condition. The concentrations of ammonia and proline in drought stressed non-AM plants significantly increased, while mycorrhizal inoculation lowered significantly ammonia and proline accumulation. The decrease in leaf dry weight in drought stressed-plants was significantly correlated to the increase in ammonia (p<0.01) and proline concentration (p<0.01). These results suggested that the increased P content and N assimilation by mycorrhizal inoculation may be associated with drought stress tolerance, showing the moderating effects on shoot growth inhibition and ammonia accumulation in drought stressed-plants.