• Title/Summary/Keyword: 토양미생물

Search Result 1,697, Processing Time 0.032 seconds

Effects on the Soil Microbial Diversity and Growth of Red Pepper by Treated Microbial Agent in the Red Pepper Field (경작지토양에서 미생물제제가 미생물의 다양성과 고추의 생육에 미치는 영향)

  • An, Chang-Hwan;Lim, Jong-Hui;Kim, Yo-Hwan;Jung, Byung-Kwon;Kim, Jin-Won;Kim, Sang-Dal
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.1
    • /
    • pp.30-38
    • /
    • 2012
  • We investigated the effects on soil microbial diversity and the growth promotion of red pepper resulting from inoculation with a microbial agent composed of Bacillus subtilis AH18, B. licheniformis K11 and Pseudomonas fluorescens 2112 in a red pepper farming field. Photosynthetic bacteria, Trichoderma spp., Azotobacter spp., Actinomycetes, nitrate oxidizing bacteria, nitrite oxidizing bacteria, nitrogen fixing bacteria, denitrifying bacteria, phosphate solubilizing bacteria, cellulase producing bacteria, and urease producing bacteria are all indicator microbes of healthy soil microbial diversity. The microbial diversity of the consortium microbial agent treated soil was seen to be 1.1 to 14 times greater than soils where other commercial agent treatments were used, the latter being the commercial agent AC-1, and chemical fertilizer. The yield of red pepper in the field with the treated consortium microbial agent was increased by more than 15% when compared to the other treatments. Overall, the microbial diversity of the red pepper farming field soil was improved by the consortium microbial agent, and the promotion of growth and subsequent yield of red pepper was higher than soils where the other treatments were utilized.

The Application of the Sewage, Sanitary Sewage and Wastewater Processing by Soil Purification Theory (토양정화법을 이용한 하.오수 및 폐수 처리의 현장적용성에 관한 연구)

  • Chun, Byungsik;Yoo, Junhee;Kim, Jungyong;Kumar, S;Shin, Sanguok;Shin, Bangwoong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.4
    • /
    • pp.77-84
    • /
    • 2008
  • Soil purification theory is the method using the soil micro-organism like aerobic and anaerobic for treatment of wastewater. The soil has many kinds of micro-organism and it multiply as change of the environment. Unlikely other methods, the soil purification theory is adaptable to inflow water change; moreover, it can process the T-N, T-P without any special method and management. The top is covered with the improved soil which can remove the bad smell and is used for resting place according to planting the lawn. This study is focused on analysis of the treatment processing of wastewater comparing inflow with outflow water. As a results, removal rate of the processing the BOD, COD and SS is almost 90~100% and it is 60~80% in T-N, T-P.

  • PDF

Microbial Diversity, Survival and Recovery as Bioindicators in Soils from Different Parent Materials in Korea (생물학적 토양 지표로서의 모재별 미생물의 다양성과 복원율)

  • Suh, Jang-Sun;Kwon, Jang-Sik;Kim, Sang-Hyo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.4
    • /
    • pp.243-252
    • /
    • 2002
  • To develop indicators for soil health evaluation, biological characteristics of native soils from the different parent materials were studied. Survival rate of fluorescent Pseudomonas in soils was the lowest as 0.1% while those of thermophilic Bacillus and alkaliphilic bacteria were over the 90% by the soil drying stress. There was positive relationship between soil microbial biomass and organic carbon exudated from the microbial biomass by the treatment. The average air-drying effect of soils was 39.7% with ranges of 9.7~95.0%. The propagules of mesophilic Bacillus and Gram negative bacteria were increased by the re-wetting of dried soils. Soil pH affected positively to the recovering rate of microbial number. Average recovering rate of microbes was 65.3%, and there was positive relationship between microbial biomass recovery and fluorescent Pseudomonas population.

Studies on Microflora of the Paddy and Upland Soils of Korea -I. Distribution of Microflora of the Paddy Soils (우리나라 논, 밭토양의 미생물상(微生物相)에 한 연구 -I. 논토양의 미생물(微生物) 분포조사(分布調査))

  • Yoo, Ick-Dong;Yun, Seh-Young;Lee, Myong-Goo;Rhu, Jin-Chang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.2
    • /
    • pp.195-202
    • /
    • 1983
  • Sixty paddy soil samples were collected from the different Korean agricultural climatic area to find relationship between soil physicochemical properties and soil microorganisms. The results are summarized as follows : 1. The mean numbers of microorganisms in collected paddy soils were $121.8{\times}10^5$ in bacteria (B), $22.5{\times}10^5$ in actinomycetes (A) and $32.4{\times}10^3$ in fungi (F) per gr soil. The ratios of B/F, B/A, and A/F were 385, 5.1 and 82, respectively. 2. Number of soil microorganism was lowest in Mountainous area, lower in Eastern Coast, Gyeonggi Bay and Chungcheong Continental area, but higher in Honam Plain and Southern Part. 3. The significant positive correlation were obtained between the number of microorganisms and soil chemical properties, available phosphorous, $K^+$, $Mg^{++}$, T-C and soil pH. 4. The number of soil microorganism was in the order of Clay loamy soil > Clayey soil > Loamy soil > Sandy loamy soil.

  • PDF

The Effects of Soybean Cultivation on Soil Microorganism Activity (콩 재배가 토양 미생물 군집 활성도에 미치는 영향)

  • Bak, Gyeryeong;Lee, Gyejun;Kim, Taeyoung
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.2
    • /
    • pp.76-82
    • /
    • 2019
  • BACKGROUND: For sustainable agriculture, there are various agricultural practices including low input. Over the last few decades high input of chemical fertilizer and compounds results in environmental pollution and deterioration of soil fertility. Soybean (Glycine max L.) is well known eco-friendly crop due to their symbionts. Soybean has a relationship with nitrogen fixation bacteria called rhizobia. In this research work, we investigated effects of soybean cultivation on soil microorganism activities. METHODS AND RESULTS: Experiments were conducted in pots and potato cultivation was used as reference. Soil chemical properties were analyzed considering soil nutrient over cropping period. For the soil microbial community analysis, dehydrogenase activity analysis (DHA) analyzed along with denaturing gradient gel electrophoresis. The results showed that higher soil organic matter in the soybean cultivation soil than in the potato cultivation soil. Available $P_2O_5$ concentration increased gradually in both pots but showed higher value in the potato cultivation soil. DHA value implying microbial activities showed higher value in the soybean cultivation soil over all cropping period. CONCLUSION: The cause of high microbial activity in the soybean cultivation soil was considered to the effects of some specific microorganisms related to soybean cultivation. Therefore, the availability of soybean cultivation for sustainable agriculture should be encouraged in terms of microorganism community activity in soil.

Contents of Soil Microbial Phospholipid Fatty Acids as Affected by Continuous Cropping of Pepper under Upland (노지 고추 연작 토양의 미생물 인지질 지방산 함량)

  • Hwang, Jae-Moon;Park, Kee-Choon;Kim, Su-Jung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.1012-1017
    • /
    • 2010
  • This study was carried out to investigate the effect of continuous cropping of pepper on soil microbial phospholipid fatty acids (PLFAs) under upland applied without any pesticides and chemical herbicides from 2000 to 2009. Microbial PLFAs were analysed from soils sampled in 2009. Soil microbial diversities showed PLFAs of monoplanting of pepper were distinct from those of monoplanting of garlic and interplanting of garlic and pepper by principle component 2 (PC2). Furthermore, soil microbial activity of monoplanting of pepper significantly decreased PLFAs representing as VAM-fungi, whereas it significantly increased in actinomycetes and saturated/monounsaturated PLFAs' ratio. The results drove continuous cropping of pepper would vary the microbial community and their specific activity. Soil microbial activities in continuous cropping system would depend on crop root systems.

유류 오염 토양의 생물학적 토양복원 설계를 위한 사전 조사 및 이를 이용한 현장복원

  • 김국진;고일원;이광표;이철효
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.322-325
    • /
    • 2003
  • 본 연구에서는 경유와 윤활유로 오염된 토양에서 유류분해능이 우수한 분해균주 5종을 분리하여 동정하였고. 분리된 미생물을 이용하여 실험실 및 현장 Pilot Test 수행으로 현장 복원에 필요한 설계인자를 도출하여 실제 현장 토양복원에 적용하였다. 미생물의 투입량은 2.0 $\times$ $10^{6}$ CFU/g 이상으로 투입하고, 투입 영양분의 조성은 오염된 탄소원의 몰비 농도와 비교하여 질소원으로는 황산암모늄, 요소, 질산암모늄 등을 질소 몰수로 첨가하구 인산원으로는 인산칼륨, 이인산칼륨 등을 인산 몰수로 공급하여 토양의 C/N/P 비율이 100:10:1~ 100:1:0.5 범위 이내로 조절되도록 오염 토양에 영양분을 공급하였으며, 경작 횟수는 3회/주 이상으로 수행하여 오염토양 TPH 5,000ppm을 40일 동안 2,000ppm 이하로 복원하였으며, 이때 생분해상수 k는 0.0229/day로 확인되었다.

  • PDF

Korean Paddy Soil Microbial Community Analysis Method Using Denaturing Gradient Gel Electrophoresis (Denaturing gradient gel electrophoresis를 이용한 한국의 논 토양 미생물 다양성 분석 방법)

  • Choe, Myeongeun;Hong, Sung-Jun;Lim, Jong-Hui;Kwak, Yunyoung;Back, Chang-Gi;Jung, Hee-Young;Lee, In-Jung;Shin, Jae-Ho
    • Journal of Applied Biological Chemistry
    • /
    • v.56 no.2
    • /
    • pp.95-100
    • /
    • 2013
  • Soil microbes are important integral components of soil ecosystem which have significant and diverse role in organic matter decomposition, nitrogen cycling, and nitrogen fixation. In this study an effective denaturing gradient gel electrophoresis (DGGE) method was employed for paddy soil microbial diversity survey. For optimum paddy soil microbial DNA extraction, different methods such as Lysis buffer, skim milk bead, sodium phosphate buffer, Epicentre Soil Master DNA extraction kit (Epicentre, USA) and Mo Bio Power Soil DNA kit (MO BIO, USA) methods were utilized. Among all the method, using Mo Bio Power Soil kit was most effective. DGGE analysis of Bacteria was carried out at 6% polyacylamide gel and 45-60% denaturing gradient in the optimal conditions. Whereas DGGE analysis of fungi was done at 6% polyacrylamide gel and 45-80% denaturing gradient in the optimal conditions. By applying the above assay, it was found that variation within the microbial community of paddy soil occurs by a factor of time. DGGE assay used in this study through for a variety of soil microbial analysis suggests the potential use of this method.

Improved Migration of Arsenic by Bio-Electrokinetics in Soil (토양에서 생물학적 동전기법의 영향에 의한 As의 이동)

  • Kim, Hong Tae;Lee, Tae-Ryong
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.4
    • /
    • pp.344-351
    • /
    • 2015
  • In this study, bio-electrokinetics was used to increase migration of arsenic by activating endemic microorganisms in the soil. In this technology, bio-electrokinetics which the cultured soil microorganisms and nutrients injected combines with biological technology. This technology using electrical movement of microorganisms could overcome the weakness of late degradation speed and low removal efficiency. And, various soil microorganisms reduce ferreous, manganese, etc., using organic matter by as an electron donor by injecting mixture of soil microorganisms and nutrients instead of using electrolyte of the electrode. Accordingly, surrounding metal oxide microorganisms convert arsenic (III) to arsenic (V) to increase migration of arsenic (III), in consequence, migration of arsenic increased in 60 to 70% compared to about 30% of conventional electrokinetics.

The Effect of Changes in Soil Microbial Communities on Geochemical Behavior of Arsenic (토양 미생물 군집의 변화가 비소의 지구화학적 거동에 미치는 영향)

  • Eui-Jeong Hwang;Yejin Choi;Hyeop-Jo Han;Daeung Yoon;Jong-Un Lee
    • Economic and Environmental Geology
    • /
    • v.57 no.3
    • /
    • pp.305-317
    • /
    • 2024
  • To investigate the effect of changes in microbial communities on arsenic release in soil, experiments were conducted on arsenic-contaminated soils (F1, G7, and G10). The experiments involved three groups of the experimental sets; ① BAC: sterilized soil + Bacillus fungorum, ② IND: indigenous bacteria, and ③ MIX: indigenous bacteria + B. fungorum, and incubated them for seven weeks using lactate as a carbon source under anaerobic conditions. The experimental results showed that higher concentrations of arsenic were released from the IND and MIX soils, where indigenous bacterial communities existed, compared to BAC. Significantly higher levels of arsenic were released from the G10 soil, which showed higher pH, compared to the F1 and G7 soils. In the G10 soil, unlike other soils, the proportion of As(III) among the released arsenic was also low. These results may be attributed to differences in microbial community composition that vary depending on the soil. By the seventh week, the diversity of microbial species in the IND and MIX soils had significantly decreased, with dominant orders such as Eubacteriales and Bacillales thriving. Bacteroidales in the seventh week of the MIX in the F1 soil, Rummeliibacillus in the seventh week of the IND and MIX of the G7 soil, and Enterobacterales in the IND and MIX of the G10 soil were dominant. At present, it is not known which mechanisms of microbial community changes affect the geochemical behavior of arsenic; however, these results indicate that microbiome in the soil may function as one of the factors regulating arsenic release.