• Title/Summary/Keyword: 토압식 쉴드TBM

Search Result 25, Processing Time 0.026 seconds

A study on EPB shield TBM face pressure prediction using machine learning algorithms (머신러닝 기법을 활용한 토압식 쉴드TBM 막장압 예측에 관한 연구)

  • Kwon, Kibeom;Choi, Hangseok;Oh, Ju-Young;Kim, Dongku
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.2
    • /
    • pp.217-230
    • /
    • 2022
  • The adequate control of TBM face pressure is of vital importance to maintain face stability by preventing face collapse and surface settlement. An EPB shield TBM excavates the ground by applying face pressure with the excavated soil in the pressure chamber. One of the challenges during the EPB shield TBM operation is the control of face pressure due to difficulty in managing the excavated soil. In this study, the face pressure of an EPB shield TBM was predicted using the geological and operational data acquired from a domestic TBM tunnel site. Four machine learning algorithms: KNN (K-Nearest Neighbors), SVM (Support Vector Machine), RF (Random Forest), and XGB (eXtreme Gradient Boosting) were applied to predict the face pressure. The model comparison results showed that the RF model yielded the lowest RMSE (Root Mean Square Error) value of 7.35 kPa. Therefore, the RF model was selected as the optimal machine learning algorithm. In addition, the feature importance of the RF model was analyzed to evaluate appropriately the influence of each feature on the face pressure. The water pressure indicated the highest influence, and the importance of the geological conditions was higher in general than that of the operation features in the considered site.

Development of simulation equipment system on EPB shield TBM hood operation (토압식 쉴드TBM의 후드부 시뮬레이션 장비 시스템 개발에 대한 연구)

  • Kim, Sang-Hwan;Oh, Tae-Sang;Park, Soo-Hwan;Lee, Choong-Yeoul;Park, Jong-Kwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.2
    • /
    • pp.193-201
    • /
    • 2014
  • This paper presents the development of simulation system on EPB shield TBM Hood operation. In recent, EPB shield TBM is widely used in the tunnel construction. Since the hood system of the EPB shield TBM is most important to excavate the tunnel, it is necessary to perform the simulation of hood system to investigate the design and operation parameters prior to tunnel construction. In order to carry out this study, the scaled simulation system was designed and developed. The model tests were performed to verify the developed system. During the simulation, the earth pressures developed in the chamber during tunnelling were measured to evaluate the operation technique. The test results obtained by the developed simulation system show clearly the similar behaviour of TBM hood compared with the field data. It was also found that the ground loss during tunnelling is dependent on the change of earth pressure in chamber. Therefore, the simulation system developed in this study will be very useful to evaluate the operation technique of the TBM hood prior to tunnel construction. In addition, this system will be applied in a various condition of ground to get the operating information.

The suggestion of tunneling information and detail requirements for EPB shield machine design (토압식 쉴드TBM 장비설계를 위한 설계항목과 세부 요구사양의 구성에 관한 제안)

  • Kim, Ki-Hwan;Kim, Hyouk;Kim, Seong-Cheol;Kang, Si-On;Mun, Cheol-Hwa
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.6
    • /
    • pp.611-622
    • /
    • 2020
  • Recently, tunneling projects using shield TBM are increasing in Korea, but the information of client for machine design and manufacturing considering the characteristics of the tunneling phase is not formal, and it is difficult to optimized machine for suitable tunneling works. This paper suggest as for reference the required terms that can be used in Korea on the design items and detailed requirements for ordering of EPB shield TBM based on overseas case study. It would be hope that the TBM user can request the overall tunneling plan and required machine specification when ordering TBM, and the TBM supplier can design and manufacturing that is clear condition and suitable machine for the successful project, so that there are no residential civil complaints and for safe tunneling as well, shield TBM tunneling method will be activated.

A Study on Prediction of EPB shield TBM Advance Rate using Machine Learning Technique and TBM Construction Information (머신러닝 기법과 TBM 시공정보를 활용한 토압식 쉴드TBM 굴진율 예측 연구)

  • Kang, Tae-Ho;Choi, Soon-Wook;Lee, Chulho;Chang, Soo-Ho
    • Tunnel and Underground Space
    • /
    • v.30 no.6
    • /
    • pp.540-550
    • /
    • 2020
  • Machine learning has been actively used in the field of automation due to the development and establishment of AI technology. The important thing in utilizing machine learning is that appropriate algorithms exist depending on data characteristics, and it is needed to analysis the datasets for applying machine learning techniques. In this study, advance rate is predicted using geotechnical and machine data of TBM tunnel section passing through the soil ground below the stream. Although there were no problems of application of statistical technology in the linear regression model, the coefficient of determination was 0.76. While, the ensemble model and support vector machine showed the predicted performance of 0.88 or higher. it is indicating that the model suitable for predicting advance rate of the EPB Shield TBM was the support vector machine in the analyzed dataset. As a result, it is judged that the suitability of the prediction model using data including mechanical data and ground information is high. In addition, research is needed to increase the diversity of ground conditions and the amount of data.

Evaluation of applicability of xanthan gum as eco-friendly additive for EPB shield TBM soil conditioning (친환경 첨가제로서 잔탄검의 토압식 쉴드 TBM 쏘일 컨디셔닝 적용성 평가)

  • Suhyeong Lee;Hangseok Choi;Kibeom Kwon;Byeonghyun Hwang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.3
    • /
    • pp.209-222
    • /
    • 2024
  • The Earth Pressure Balance (EPB) shield Tunnel Boring Machine (TBM) is widely used for underground tunnel construction for its advantages, such as eliminating the need for additional facilities compared to the slurry shield TBM, which requires Slurry Treatment Plant (STP). During EPB shield TBM excavation, a soil conditioning technique is employed to enhance the physical properties of the excavated soil by injecting additives, thus broadening the range of applicable ground conditions to EPB shield TBMs. This study explored the use of xanthan gum, a type of biopolymer, as an alternative to the commonly used polymer additive. Biopolymers, derived from biological sources, are fully biodegradable. In contrast to traditional polymers such as polyacrylic acid, which contain environmentally harmful components, xanthan gum is gaining attention as an eco-friendly material due to its minimal toxicity and environmental impact. Test conditions with similar workability were established through slump tests, and the rheological characteristics were assessed using a laboratory pressurized vane shear test apparatus. The experiments demonstrated that, despite exhibiting similar workability, the peak strength in the flow curve decreased with increasing the content of xanthan gum. Consequently, a correlation between the xanthan gum content and peak strength was established. Replacing the traditional polymers with xanthan gum could enable stable EPB shield TBM operation by reducing equipment load, in addition to offering environmental benefits.

A Study of Shield TBM Tunnelling-induced Volume Loss Estimation Considering Shield Machine Configurations and Driving Data (쉴드 TBM의 장비 형상 및 굴진 데이터를 고려한 체적손실 산정 연구)

  • Park, Hyunku;Chang, Seokbue;Lee, Seungbok
    • Tunnel and Underground Space
    • /
    • v.25 no.5
    • /
    • pp.397-407
    • /
    • 2015
  • Estimation of shield TBM tunnelling-induced volume loss is of great importance for ground settlement control. This study proposed a simple method for evaluation of volume loss during TBM tunnlling, which is able to take into account of shield machine configurations and main driving data in calculation. The method was applied to analyze the tunnelling cases with earth pressure balanced and slurry pressure balanced shiled TBM, and mostly, reasonable agreements with monitoring results were found. Additional discussions were made for some disagreements.

A lab-scale screw conveyor system for EPB shield TBM: system development and applicability assessment (토압식 쉴드 TBM 스크류 컨베이어 축소 모형 시험 장비: 장비 개발과 적용성 평가)

  • Suhyeong Lee;Hangseok Choi;Kibeom Kwon;Dongjoon Lee;Byeonghyun Hwang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.5
    • /
    • pp.533-549
    • /
    • 2024
  • Soil conditioning is a critical process when tunneling with an earth pressure balance (EPB) shield tunnel boring machine (TBM) to enhance performance. To determine the optimal additive injection conditions, it is important to understand the rheological properties of conditioned soil, which is typically assessed using a rheometer. However, a rheometer cannot simulate the actual process of muck discharge in a TBM. Therefore, in this study, a scaled-down model of an 8-meter-class EPB shield TBM chamber and screw conveyor, reduced by a factor of 1:20, was fabricated and its applicability was evaluated through laboratory experiments. A lab-scale model experiment was conducted on artificial sandy soil using foam and polymer as additives. The experimental results confirmed that screw torque was consistent with trends observed in previous laboratory pressurized vane shear test data, establishing a positive proportional relationship between screw torque and yield stress. The muck discharge efficiency according to foam injection ratio (FIR) showed similar values overall, but decreased slightly at 60% of FIR and when the polymer was added. In addition, the pressure distribution generated along the chamber and screw conveyor was assessed in a manner similar to the actual EPB TBM. This study demonstrates that the lab-scale screw conveyor model can be used to evaluate the shear properties and muck discharge efficiency.

A Study on Advance Rate under the Operating Conditions of EPB Shield TBM Based on TBM Operation Data (현장 굴진자료 분석에 의한 토압식 쉴드 TBM의 운전조건과 굴진속도 연구)

  • An, Man Sun;Lim, Kwang-Su;Kim, Kyong Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6D
    • /
    • pp.839-848
    • /
    • 2011
  • TBM (Tunnel Boring Machine) tunnel should be carry out with the adopted machine until the end of excavation because of impossibility of replacement or modification of machine. Observation of the face of the tunnel is difficult, especially in EPB(Earth Pressure Balance) shield TBM, predict changes in the ground condition with analyzing data, collected during the excavation, and it should be reflected in construction. Until recently, subjects of studies on TBM are mainly the determination of machine and the development of advance rate prediction model, according to the characteristics of ground which is the target of excavation. However, study focused on the estimation of ground conditions and the improvement in operational methods using excavation data of TBM equipment, the principal of the excavation, has been done not so much. This study examine the variances in advance rate depending on changes in operating conditions and evaluate the optimal operating conditions of adopt machine, using working data obtained from EPB shield TBM project. The result of this study is suggested as follows. First, cutter head RPM and total thrust force are biggest influences on advance rate, Second, it is recommended for proper advance rate that total thrust force is controlled while optimum cutter head RPM is kept, Third, according to the increasing trend of total thrust force, the changes in ground conditions can be predicted, the appropriate operating conditions can be determined.

A preliminary study for numerical and analytical evaluation of surface settlement due to EPB shield TBM excavation (토압식 쉴드 TBM 굴착에 따른 지반침하 거동 평가에 관한 해석적 기초연구)

  • An, Jun-Beom;Kang, Seok-Jun;Kim, Jung Joo;Kim, Kyoung Yul;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.3
    • /
    • pp.183-198
    • /
    • 2021
  • The EPB (Earth Pressure Balanced) shield TBM method restrains the ground deformation through continuous excavation and support. Still, the significant surface settlement occurs due to the ground conditions, tunnel dimensions, and construction conditions. Therefore, it is necessary to clarify the settlement behavior with its influence factors and evaluate the possible settlement during construction. In this study, the analytical model of surface settlement based on the influence factors and their mechanisms were proposed. Then, the parametric study for controllable factors during excavation was conducted by numerical method. Through the numerical analysis, the settlement behavior according to the construction conditions was quantitatively derived. Then, the qualitative trend according to the ground conditions was visualized by coupling the numerical results with the analytical model of settlement. Based on the results of this study, it is expected to contribute to the derivation of the settlement prediction algorithm for EPB shield TBM excavation.

Case Study of Shield Tunnel Construction : Incheon Metro Line 1 Geomdan Extension Phase 1 Project (쉴드TBM 터널 시공 사례 : 인천도시철도1호선 검단연장선 1공구)

  • Byungkwan Park;Chaeman Joo;Dohak Huh;Hyunsup Song;Gwangsu Joo;Dohoon Kim;Minsang Lee
    • Tunnel and Underground Space
    • /
    • v.34 no.3
    • /
    • pp.185-195
    • /
    • 2024
  • The Incheon Metro Line 1 Geomdan Extension Phase 1 is the first project in South Korea where both a roadheader and TBM (Tunnel Boring Machine) are being used together. The shield TBM tunnel section is 1,057 m long, and is mostly composed of rock, including the section beneath the Airport Railroad and the Gyeongin Ara Waterway. A 7.8 m earth pressure balance shield TBM was used for tunnel excavation. The average monthly advance rate for both the North and South tracks is 239.1 m, with a maximum monthly advance rate of 334.5 m. This technical article comprehensively evaluates the productivity of the shield TBM, focusing on the TBM excavation performance. Above all, it aims to provide useful reference material for the successful execution of shield TBM tunnel construction.