DOI QR코드

DOI QR Code

A preliminary study for numerical and analytical evaluation of surface settlement due to EPB shield TBM excavation

토압식 쉴드 TBM 굴착에 따른 지반침하 거동 평가에 관한 해석적 기초연구

  • An, Jun-Beom (Dept. of Civil and Environmental Engineering, KAIST) ;
  • Kang, Seok-Jun (Dept. of Civil and Environmental Engineering, KAIST) ;
  • Kim, Jung Joo (Next Generation Transmission & Substation Laboratory, KEPCO Research Institute, KEPCO) ;
  • Kim, Kyoung Yul (Next Generation Transmission & Substation Laboratory, KEPCO Research Institute, KEPCO) ;
  • Cho, Gye-Chun (Dept. of Civil and Environmental Engineering, KAIST)
  • 안준범 (한국과학기술원 건설및환경공학과) ;
  • 강석준 (한국과학기술원 건설및환경공학과) ;
  • 김정주 (한전 전력연구원 차세대송변전연구소) ;
  • 김경열 (한전 전력연구원 차세대송변전연구소) ;
  • 조계춘 (한국과학기술원 건설및환경공학과)
  • Received : 2021.04.20
  • Accepted : 2021.05.20
  • Published : 2021.05.31

Abstract

The EPB (Earth Pressure Balanced) shield TBM method restrains the ground deformation through continuous excavation and support. Still, the significant surface settlement occurs due to the ground conditions, tunnel dimensions, and construction conditions. Therefore, it is necessary to clarify the settlement behavior with its influence factors and evaluate the possible settlement during construction. In this study, the analytical model of surface settlement based on the influence factors and their mechanisms were proposed. Then, the parametric study for controllable factors during excavation was conducted by numerical method. Through the numerical analysis, the settlement behavior according to the construction conditions was quantitatively derived. Then, the qualitative trend according to the ground conditions was visualized by coupling the numerical results with the analytical model of settlement. Based on the results of this study, it is expected to contribute to the derivation of the settlement prediction algorithm for EPB shield TBM excavation.

토압식 쉴드 TBM 공법은 커터헤드 후면 챔버에 버력을 채워 막장 안정성을 확보하는 공법으로, 연속적인 굴착 및 지보를 통해 지반 변형을 억제하는 것으로 알려져 있다. 하지만 여전히 지반 조건, 터널 크기, 그리고 시공 조건에 의해 무시할 수 없는 지반 침하가 발생하는 실정이다. 따라서 지반침하 영향인자에 의한 침하 거동을 명확하게 이해하고 이를 기반으로 시공 중 발생 가능한 지반침하를 평가할 필요가 있다. 본 연구에서는 토압식 쉴드 TBM 시공 시의 지반침하 주요 영향 인자들과 침하 발생 메커니즘이 반영된 해석 모델(analytical model)을 제시하였고, 시공 중 조절 가능한 인자들에 대한 매개변수 해석을 수치해석 기법을 통해 수행하였다. 수치해석 결과를 통해 시공 조건에 의한 침하 거동을 정량적으로 도출하였으며, 침하 해석 모델과의 연계를 통해 지반 조건에 따른 정성적인 경향성을 도시하였다. 본 연구 결과를 통해 토압식 쉴드 TBM 굴착에 의한 침하예측모델 도출에 기여할 것으로 기대된다.

Keywords

Acknowledgement

본 연구는 한국전력공사 자체연구개발 과제(R19SA02) '전력구 터널 지반 위험예측 기술 개발'의 지원으로 수행되었습니다. 연구 지원에 감사드립니다. 이 논문은 국토교통부의 스마트시티 혁신인재육성사업으로 지원되었습니다.

References

  1. An, J.B., Park, J., Cho, G.C. (2021), "Numerical evaluation of surface settlement due to shield TBM excavation conditions", Proceedings of the Korean Tunnelling and Underground Space Association Annual Spring Conference, Seoul, pp. 103-104.
  2. Attewell, P.B., Woodman, J.P. (1982), "Predicting the dynamics of ground settlement and its derivitives caused by tunnelling in soil", Ground Engineering, Vol. 15, No. 8, pp. 13-22.
  3. Chakeri, H., Ozcelik, Y., Unver, B. (2013), "Effects of important factors on surface settlement prediction for metro tunnel excavated by EPB", Tunnelling and Underground Space Technology, Vol. 36, pp. 14-23. https://doi.org/10.1016/j.tust.2013.02.002
  4. Comodromos, E.M., Papadopoulou, M.C., Konstantinidis, G.K. (2014), "Numerical assessment of subsidence and adjacent building movements induced by TBM-EPB tunneling", Journal of Geotechnical and Geoenvironmental Engineering, Vol. 140, No. 11, 04014061. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001166
  5. GEO Report No. 298 (2014), Ground control for EPB TBM tunnelling, Geotechnical Engineering Office, Hong Kong.
  6. ITA WG Mechanized Tunneling (2000), Recommendations and guidelines for tunnel boring machines (TBMs), pp. I-22~I-34.
  7. Jaky, J. (1944), "The coefficient of earth pressure at rest. In Hungarian (A nyugalmi nyomas tenyezoje)", Journal of the Society of Hungarian Architects and Engineering, Vol. 78, No. 22, pp. 355-358.
  8. Jun, G.C., Kim, D.H. (2016), "A Intercomparison on the estimating shield TBM tunnel face pressure through analytical and numerical analysis", Journal of Korean Tunnelling and Underground Space Association, Vol. 18, No. 3, pp. 273-282. https://doi.org/10.9711/KTAJ.2016.18.3.273
  9. KDS 27 25 00 (2016), TBM (in Korean).
  10. Kirsch, C. (1898), "Die theorie der elastizitat und die bedurfnisse der festigkeitslehre (The theory of elasticity and its application to the strength of materials)", Zeitschrift des Vereines Deutscher Ingenieure, Vol. 42, pp. 797-807.
  11. Lambrughi, A., Rodriguez, L.M., Castellanza, R. (2012), "Development and validation of a 3D numerical model for TBM-EPB mechanised excavations", Computers and Geotechnics, Vol. 40, pp. 97-113. https://doi.org/10.1016/j.compgeo.2011.10.004
  12. Lee, K.M., Rowe, R.K., Lo, K.Y. (1992), "Subsidence owing to tunnelling. I. Estimating the gap parameter", Canadian Geotechnical Journal, Vol. 29, No. 6, pp. 929-940. https://doi.org/10.1139/t92-104
  13. Lee, S.W., Jang, S.H., Choe, S.U. (2011), "Prediction of future demand for domestic TBM tunnels", Geotechnical Engineering, Vol. 27, No. 2, pp. 18-26.
  14. Lo, K., Rowe, R.K. (1982), Prediction of ground subsidence due to tunnelling in clays: research report GEOT-10-82, Faculty of Engineering Science, University of Western Ontario.
  15. Mair, R.J., Taylor, R.N. (1997), "Theme lecture: Bored tunnelling in the urban environment", Proceedings of the Fourteenth International Conference on Soil Mechanics and Foundation Engineering, Rotterdam, pp. 2353-2385.
  16. Melis, M., Medina, L., Rodriguez, J.M. (2002), "Prediction and analysis of subsidence induced by shield tunnelling in the Madrid Metro extension", Canadian Geotechnical Journal, Vol. 39, No. 6, pp. 1273-1287. https://doi.org/10.1139/t02-073
  17. O'Reilly, M.P., New, B.M. (1982), "Settlements above tunnels in the United Kingdom-their magnitude and prediction", Proceedings of the Tunnelling'82, London, pp. 173-181.
  18. Peck, R.B. (1969), "Deep excavations and tunneling in soft ground", Proceedings of the 7th ICSMFE, Mexico City, pp. 225-290.
  19. Rodriguez, L.M. (2000), Estudio de los movimientos originados por la excavacion de tuneles con escudos de presion de tierras en los suelos de Madrid (Study of the movements caused by the excavation of tunnels with earth pressure shields in the soils of Madrid), Doctoral Dissertation, University of A Coruna.
  20. Rowe, R.K., Lo, K.Y., Kack, G.J. (1983), "A method of estimating surface settlement above tunnels constructed in soft ground", Canadian Geotechnical Journal, Vol. 20, No. 1, pp. 11-22. https://doi.org/10.1139/t83-002
  21. Selby, A.R. (1988), "Surface movements caused by tunnelling in two-layer soil", Geological Society, London, Engineering Geology Special Publications, Vol. 5, No. 1, pp. 71-77.
  22. Shirlaw, J.N., Richards, D.P., Ramond, P., Longchamp, P. (2004), "Recent experience in automatic tail void grouting with soft ground tunnel boring machines", Proceedings of the ITA-AITES World Tunnel Congress, Singapore, pp. 22-27.
  23. Sugiyama, T., Hagiwara, T., Nomoto, T., Nomoto, M., Ano, Y., Mair, R.J., Bolton, M.D., Soga, K. (1999), "Observations of ground movements during tunnel construction by slurry shield method at the Docklands Light Railway Lewisham Extension-East London", Soils and Foundations, Vol. 39, No. 3, pp. 99-112. https://doi.org/10.3208/sandf.39.3_99
  24. Suwansawat, S., Einstein, H.H. (2007), "Describing settlement troughs over twin tunnels using a super-position technique", Journal of Geotechnical and Geoenvironmental Engineering, Vol. 133, No. 4, pp. 445-468. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:4(445)
  25. Terzaghi, K. (1943), Theoretical soil mechanics, John Wiley & Sons, New York, pp. 11-15.