• Title/Summary/Keyword: 토심

Search Result 378, Processing Time 0.026 seconds

Organic Matter Dynamics on Golf Course Greens (골프장 그린에서 토섬별 유기물의 경시적 변화)

  • Huh, Keun-Young;Ko, Byong-Gu
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.36 no.3
    • /
    • pp.21-28
    • /
    • 2008
  • The management of soil organic matter(SOM) is a key component of golf course green maintenance. As part of a major project examining the sustainable management of SOM on golf course greens, the SOM status of different age greens maintained in the same root zone composition and management were compared. Then the microbial activity, tiller number, bulk density, water content, pH, EC, and T-N in the soil were measured. In the 0${\sim}$5cm depth SOM accumulation showed no significant difference between greens. Below 5cm SOM showed a strong significance between greens and had a positive(+) correlation with year and negative(-) correlation with depth. when regression equations were used to predict SOM accumulation with year and depth, SOM below 5cm tended to increase with a rate of 0.061% . year$^{-1}$ and decrease with a rate of 0.079% . $cm^{-1}$(R2==0.841). Soil microbial activity was investigated with age and depth by using a dehydrogenase assay. Results showed a sharp drop with depth in all greens. The soil microbial activity below 5cm showed no difference between greens. The accumulated SOM below 5cm may be very resistant to decomposition in the long-term. Five years after establishment, the bulk density did not significantly change. The water content, EC, and T-N had a significant correlation with SOM. The pH decreased with the year, which may influence SOM accumulation. Organic matter accumulation was mainly affected by the pH decrase,low soil microbial activity, and high organic matter resistant to decomposition, but the effects of water content, EC, and T-N were obscure.

Change in Growth of Chrysanthemum zawadskii var. coreanum as Effected by Different Green Roof System under Rainfed Conditions (빗물활용 옥상녹화 식재지반에 따른 한라구절초의 생육 변화)

  • Ju, Jin-Hee;Kim, Won-Tae;Yoon, Yong-Han
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.39 no.1
    • /
    • pp.117-123
    • /
    • 2011
  • This study aims to suggest a suitable soil thickness and soil mixture ratio of a green roof system by verifying the growth of Chrysanthemum zawadskii var. coreanum as affected by different green roof systems using rainwater. The experimental planting grounds were made with different soil thicknesses(15cm, 25cm) and soil mixing ratios (SL, $P_7P_1L_2$, $P_6P_2L_2$, $P_5P_3L_2$, $P_4P_4L_2$) and with excellent drought tolerance. Ornamental value Chrysanthemum zawadskii var. coreanum was planted. The change in plant height, green coverage ratio, chlorophyll content, fresh weight, dry weight, and dry T/R ratio of Chrysanthemum zawadskii var. coreanum were investigated from April to October 2009. For 15cm soil thickness, the plant height of Chrysanthemum zawadskii var. coreanum was not significantly different as affected by the soil mixing ratio. However, it was found to be higher in the amended soil mixture, $P_7P_1L_2$, $P_6P_2L_2$, $P_5P_3L_2$ and $P_4P_4L_2$ than in the sandy loam soil, as it was SL overall. For 25cm soil the plant height differences were in order to SL < $P_7P_1L_2$, $P_6P_2L_2$, $P_5P_3L_2$ < $P_4P_4L_2$. The green coverage ratio was observed not to be different by soil mixing ratio with soil thickness of 15cm, but, the lowest green coverage ratio in the SL. In the 25cm soil thickness, the green coverage ratio was 86-89% with a good coverage rate overall. The change in chlorophyll contents with 15cm soil thickness was found to be the highest in the SL treatment and the lowest in the $P_5P_3L_2$ treatment. For 25cm thickness, the highest value was in the $P_4P_4L_2$ and SL, and the lowest in the$P_7P_1L_2$. Fresh weight and dry weight were larger in soil with 25cm thickness. Therefore, the growth of Chrysanthemum zawadskii var. coreanum as affected by a different green roof system for using rainwater was higher in soil with 25cm thickness than 15cm, and in PPL amended soil than in sandy loam.

Assessment of Microbial Decomposition in Soil Organic Matter Accumulation with Depth in Golf Greens (골프장 그린에서 토심별 토양 유기물 집적에 대한 미생물 분해성 평가)

  • Huh, Keun-Young;Kim, In-Hea;Deurer, Markus
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.37 no.4
    • /
    • pp.64-71
    • /
    • 2009
  • Excessive soil organic matter (SOM) is detrimental to turfgrass quality when used intensively in sand-based root zones, thereby affecting the sustainability of turfgrass systems. As part of a major project examining the sustainable management of SOM on golf greens, microbial decomposition on soil organic matter accumulation with depth was assessed and the effect of soil air-condition improvement and Ca fertilization was investigated by soil microbial respiration (SMR). Three soil samples from three depths(0~5, 5~10, and 10~15cm) of 5 year and 30 year old green were analyzed for SOM content. In 30 year old green, SMR and dehydrogenase activity(DHA) were analyzed to assess the soil microbial decomposition with depth. It was then divided into 4 plots: untreated as a control, dolomite-treated, 0~5cm deep section-removed, and 0~5 cm deep section-removed+dolomite-treated. After treatment, three soil samples were taken at 1, 2 and 4 weeks by the above-mentioned method, and analyzed for SMR to better understand SOM decomposition. SOM accumulation in the 0~5cm depth of golf greens can be controlled by intensive cultivation such as coring, but below 5cm is more difficult as the results showed that SOM content below 5cm increased over time. Soil microbial decomposition of organic matter will be necessary to reduce SOM accumulation, but SMR below 5cm was low and wasn't significantly altered by increasing exposure to air and fertilizing with Ca. As a result, aeration treatments such as coring and Ca fertilization might not be effective at improving soil microbial decomposition below 5cm depth in aged greens.

Improvement Plan for Planting Large Trees in Artificial Ground of the Apartment Complex (공동주택 인공지반 대형교목 식재 개선방안)

  • Kang, Myung-Soo;Kim, Nam-Jung
    • Land and Housing Review
    • /
    • v.6 no.4
    • /
    • pp.221-229
    • /
    • 2015
  • Large trees in the apartment complex are playing an important role to decide the quality of external environment. They are planted with the object of utilizing themselves as a landmark of the complex and enhancing space symbolism. Since planting large trees would require high maintenance costs and generate defect, it would cause decline in quality of external environment. This study researches on large trees in artificial ground of the apartment complex. This study analyzes actual condition of planting and tries to provide improvement direction of planting. In order to conduct this research, three target areas (over R30) and 265 trees are selected. Based on the drawings and specifications this study researches on the plan of landscape design, changes of field design, actual condition of completion, present condition of planting, minimum soil depth of growth and development and types of extra action for soil depth. The result shows that 85% of drawings and specifications for large trees in the apartment complex are deep-rooted tree species. On average large trees with R 35 are planted in artificial ground and there is lack of on average 65cm minimum soil depth of growth and development. Reviewing changes of field design is conducted in such limited size as mainly R30 and R40 and there is no extra plan for lack of soil depth. The plan for securing additional soil depth is done by 85% of mounding. However, since there is only 10% of satisfaction, the inappropriateness in securing additional soil is pointed out. This research also points out that the size of large trees, root characteristics and location-allocation for planting are pivotal factors for securing minimum soil depth of growth and development. This research also provides improvement direction in case of planning planting.

Soil Properties in Quercus mongolica Communities (신갈나무림의 군집별 토양특성)

  • 박관수;장규관
    • Korean Journal of Environment and Ecology
    • /
    • v.12 no.3
    • /
    • pp.236-241
    • /
    • 1998
  • This study was to compare soil characteristics among Quercus mongolica communities that characterize the boreal-temperate deciduous forest in Korea. The classification of Quercus mongolica community and soil sampling were carried in Mt. Odae and Mt. Jungwang in Kangwondo from April of 1991 to October of 1994. The study area was classified as 5 Quercus mongolica communities with Braun-Blanquet method as follows; Quercus mongolica - Abies nephrolepis, Quercus mongolica - Acer pseudosieboldianum, Quercus mongolica - Lindera obtusiloba, Quercus mongolica - Acer mandshuricum, and Quercus mongolica - Carpinus cordata communities. Quercus mongolica - Abies nephorolepis community had the most shallow depth of A horizon(5cm) among communities, and root penetration was mainly from 0 to 10cm soil depth, and they had a dry soil moisture condition. Depth of A horizon of Quercus mongolica - Lindera obtusiloba and Quercus mongolica - Acer mandshuricum communities was about 20cm, and root penetration was mainly from 0 to 20cm soil depth, and they had a slightly dry soil moisture condition. Quercus mongolica - Acer mandshuricum, and Quercus mongolica -Carpinus cordata communities had the deepest depth of A horizon(35cm) and root was well developed over 45cm, and they had a moderately-slight dry soil condition. The soil organic matter, total N, exchangeable Ca, Mg and K concentration and CEC was the greatest in Quercus mongolica-Acer mandshuricum community and Quercus mongolica-Carpinus cordata community among communities. Quercus mongolica - Abies nephyolepis community had the smallest soil organic matter, total N, and CEC among communities. There were large differences among Quercus mongolica communities by soil properties and the result may be due to different habitat positions in the landscape among communities.

  • PDF

Calibration and Validation of SWAP Model to Estimate the Soil Salinity of Reclaimed Wastewater Irrigation on Paddy Fields (농업용수 재이용에 따른 토양염분 추정를 위한 SWAP 모형의 보정과 검정)

  • Jang, Tae-Il;Sung, Chung-Hyun;Park, Seung-Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.608-612
    • /
    • 2009
  • 본 연구에서는 하수재이용에 따른 토양에서의 염분변화를 추정하기 위하여 SWAP(Soil-Water-Atmosphere-Plant) 모형을 선정하여 경기도 화성시 수원환경사업소 인근에 위치한 병점지구를 대상으로 모형의 적용성을 분석하였다. 실험에 사용한 관개용수는 1) 지하수(TR#1), 2) 하수처리장 방류수+여과+UV (TR#3)로 분류하여 실험에 사용하였다. 영농기간 동안 논으로 유입되는 총 유입수는 $1,724.2^{\sim}1,733.7$ mm 범위였으며, 이 중 약 64%가 강우에 의해 공급되었고, 나머지는 관개에 의하여 유입되었다. 유입관개수의 EC는 지하수 관개수인 TR#1이 다른 처리구에 비해 작았고, TR#3의 경우 $0.442{\sim}0.698$ dS/cm의 범위를 보였다. 모형의 보정과 검정을 위해서 대상지구에 FDR(Frequency Domain Reflection)을 설치하여 토양수분함유량과 염분농도를 토심에 따라 일단위로 모니터링 하였다. 토양함수량의 보정기간 중 토심별(50, 100, 140 cm) RMSE는 TR#1에서 $0.001^{\sim}0.002$ $cm^3cm^{-3}$, TR#3에서 $0.002^{\sim}0.006$ $cm^3cm^{-3}$으로 나타났으며, 검정기간 중 토심별 RMSE는 TR#1에서 $0.003^{\sim}0.064$ $cm^3cm^{-3}$, TR#3에서 0.001$cm^3cm^{-3}$로 나타났다. 토양염분의 보정기간 중 토심별 RMSE는 TR#1에서 $0.001^{\sim}0.023{\times}10^{-3}$ dS $m^{-1}$, TR#3에서 $0.028^{\sim}0.045{\times}10^{-3}$ dS$m^{-1}$로 나타났으며, 검정기간의 토심별 RMSE는 TR#1에서 $0.018^{\sim}0.037{\times}10^{-3}$ dS$m^{-1}$, TR#3에서 $0.004^{\sim}0.014{\times}10^{-3}$ dS$m^{-1}$로 적용성이 있는 것으로 나타났다.

  • PDF

A Study of Soil Characteristics in Coastal Reclaimed Areas for Planting Ground Treatment (임해매립지에서 식재기반 조성을 위한 토양특성에 관한 연구)

  • 구본화;강재선;장관순
    • Korean Journal of Environment and Ecology
    • /
    • v.13 no.1
    • /
    • pp.89-95
    • /
    • 1999
  • 본 연구는 임해매립지에서 토양의 화학적 특성을 조사하여 수목식재를 위한 합리적인 토양관리에 관한 자료를 얻고자 수행하였다. 토양조사는 시화매립지의 시흥공단에서 녹지조성 예정지를 중심으로 토지이용별 및 토심별로 실시되었다. 조사지역에서 개흙은 전기전도도와 치환성나트륨 백분율이 높은 염류알칼리성 토양 특징을 갖고있었다. 임해매립지에서 토양 pH 평균값은 7.8~5.7범위이었고, 주거/공단 완충녹지 토양에서 전기전도도와 치환성나트륨 백분율은 각각 3.76Sm-1와 35%로 조사지역 중에 가장 높았다. 토양 50cm 깊이에서 치환성 Na+의 평균함량은 1.76~2.80cmol+/kg으로 조사되었고, 치환성 Na+의 평균함량은 치환성 Ca2+보다는 낮았으나 치환성 Mg2+과 K+보다는 높았다. 토심별 염분농도는 50cm보다 100cm 깊이에서 높게 조사되었으며, 주거/공단 완충녹지는 전토심에서 염분농도가 수목에 영향을 주기에 충분할 정도로 높았다.

  • PDF

Economics and Ground Cover Growth Characteristics of a New Method of Shallow Soil Artificial Foundation Planting (저토심 인공지반 녹화공법의 경제성 및 도입 가능한 지피식물의 생육특성)

  • Choi, Jin-Woo;Kim, Hag-Kee;Lee, Kyong-Jae;Kang, Hyun-Kyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.37 no.5
    • /
    • pp.98-108
    • /
    • 2009
  • The purpose of this study is to analyze the characteristics of limited methods, economics and breeding appropriateness of native and imported ground cover plants in the methodology of a shallow soil rooftop garden. The new shallow soil rooftop gardening method uses a total of 13cm in soil thickness, including 4.5cm of top soil on a 7.5cm rock-wool-mat stacked onto a 1cm roll-type-draining plate. The total construction cost for each method of soil level within the design price standard for SEDUM BLOCK is 89,433won/$m^2$, and for DAKU is 92,550won/$m^2$. By comparing those two methods, the construction cost of the shallow soil artificial foundation methodology is 45,000won/$m^2$; this shows the new method is 50% less expensive than the existing method of shallow soil rooftop gardening. The experiment was executed on the rooftop of the Korean National Housing Corporation to ensure validity of the shallow soil artificial foundation planting, and the sample plants which were imported and grown now in native covering. A list investigating the growing plants was made of the cover rate in each plant class, both while alive and the dry plant weight. The native ground cover plants, Sedum kamtschaticum, Sedum middendorffianum, Allium senescens, Sedum sarmentosum, Aquilegia buergariana, and Caryopteris incana increased the cover rate, live weight and dry weight in the shallow soil artificial foundation method. Among the imported cover plants, Sedum sprium and Sedum reflexum, the cover rate increased and growth conditions improved. However, some species needed weed maintenance. After examination with the less expensive shallow soil artificial foundation method and growth analysis, it was found that rooftop gardens are a low-cost option and the growth of plants is great. This result shows the new method can contribute to the proliferation of rooftop gardens in urban settings.

Soil Physico-chemical Properties of Red pepper Fields and Plant Growth (밭토양(土壤) 물리성(物理性)과 고추 생육(生育)과의 상관(相關) 연구(硏究))

  • Jo, In-Sang;Hur, Bong-Koo;Kim, Lee Yul;Cho, Young Kil;Um, Ki-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.3
    • /
    • pp.205-208
    • /
    • 1987
  • This study was conducted to find out the optimum ranges of soil physical properties for red pepper growth by characterizing the relationship of soil physical properties and plant growth. Various environmental factors and soil physico-chemical properties and red pepper growth were investigated at 94 farmers fields in red pepper-growing area. Soil texture of the red pepper fields were mainly coarse loamy covering 72% of surveyed fields. Available soil depth, plowing layer and root zone were deeper, but bulk density and hardness of soils were lower in the area where red pepper grew well. The optimum ranges of soil three phases were identified as the solid phase below 50%, liquid phase above 10% and sir phase above 20%. The various soil physical properties were closely related with plant growth of red pepper which were highly influenced in order of available depth>bulk density>plowing layer>hardness>slope.

  • PDF