• 제목/요약/키워드: 토모 그래피

Search Result 265, Processing Time 0.035 seconds

A Field Application of 3D Seismic Traveltime Tomography (II);Application of 3D Seismic Traveltime Tomography to a dam-planned area (3차원 탄성파 토모그래피의 현장 적용 (II);댐 예정지에서의 3차원 토모그래피 적용 사례)

  • Moon, Yoon-Sup;Ha, Hee-Sang;Ko, Kwang-Buem;Kim, Ji-Soo
    • Tunnel and Underground Space
    • /
    • v.18 no.4
    • /
    • pp.263-271
    • /
    • 2008
  • 3D seismic tomography technique was assessed for applicability of developed 3D tomography algorithm based on Fresnel volume in the dam-planned area. Reconstructed 3D tomogram based on Fresnel volume and Fast Marching Method(FMM) reveals similar velocity structure to the other geotechnical survey results. With the correlation analysis between RMR data and seismic velocity information, it could provide reliable information of rock mass rate. The applicability of 3D seismic tomography was verified in this study. It would be expected to apply 3D tomography with new developed first arrival calculation and inversion algorithm to the engineering field economically.

Seismic Traveltime Tomography in Inhomogeneous Tilted Transversely Isotropic Media (불균질 횡등방성 매질에서의 탄성파 주시토모그래피)

  • Jeong, Chang-Ho;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.229-240
    • /
    • 2007
  • In this study, seismic anisotropic tomography algorithm was developed for imaging the seismic velocity anisotropy of the subsurface. This algorithm includes several inversion schemes in order to make the inversion process stable and robust. First of all, the set of the inversion parameters is limited to one slowness, two ratios of slowness and one direction of the anisotropy symmetric axis. The ranges of the inversion parameters are localized by the pseudobeta transform to obtain the reasonable inversion results and the inversion constraints are controlled efficiently by ACB(Active Constraint Balancing) method. Especially, the inversion using the Fresnel volume is applied to the anisotropic tomography and it can make the anisotropic tomography more stable than ray tomography as it widens the propagation angle coverage. The algorithm of anisotropic tomography is verified through the numerical experiments. And, it is applied to the real field data measured at limestone region and the results are discussed with the drill log and geological survey data. The anisotropic tomography algorithm will be able to provide the useful tool to evaluate and understand the geological structure of the subsurface more reasonably with the anisotropic characteristics.

3D Seismic Travel-time Tomography using Fresnel Volume (프레넬 볼륨을 이용한 3차원 탄성파 주시 토모그래피)

  • Ko, Kwang-Beom;Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.2
    • /
    • pp.101-107
    • /
    • 2003
  • 3D seismic travel-time tomography algorithm baled on Fresnel volume was developed and its feasibility was investigated by the numerical experiments. To testify the field applicability of the developed algorithm, frequency characteristics and way coverage of the crossholel seismic raw data were investigated and 3D velocity tomogram cube with about 8m spatial resolution was obtained. When compared this 3D velocity cube with the conventional 2D ray tomogram, two results were matched well. We concluded that 3D seismic tomography algorithm developed in this study has enough potential to the field application.

The Determination of settlement boundary for the rock filled embankment using seismic geotomography (탄성파 토모그래피 기법을 이용한 제방의 사석침하 평가)

  • Won, Kyoung-Sik;Park, Chung-Hwa;Jeong, Baek;Park, Sang-Uk
    • The Journal of Engineering Geology
    • /
    • v.12 no.1
    • /
    • pp.89-93
    • /
    • 2002
  • Seismic geotomography method was performed to verify rock-filled settlement and its stability in No.38+0 profile and No.40+0 profile. The velocity distributions of geotomography method expressed the quantitative value of the ground conditions. The rock-filled layer and in-situ sediments layer are clearly divided on the basis of seismic velocity 2100 m/sec which is derived from the results of seismic geotomography and boring. Current rock-filled settlement conditions are somewhat different from designed settlement estimation line. Seismic geotomography represents current settlement conditions as a quantitative analysis.

Interpretation on the Subsurface Velocity Structure by Seismic Refraction Tomography (탄성파 굴절법 토모그래피를 이용한 지반의 속도분포 해석)

  • Cho, Chang-Soo;Lee, Hee-Il;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.1
    • /
    • pp.6-17
    • /
    • 2002
  • Refraction tomography was developed to interpret subsurface velocity structure easily in topographic conditions. It was applied to synthetic refraction data to find the factors for optimization of applicability of refraction tomography such as configuration of profiling and its length, spacing of geophones and sources and topographic conditions. Also, low velocity layer near VSP hole could be detected by joint inversion with refraction and VSP data. Continuity of subsurface velocity structure in two different spread lines for area of house land development was good in case of applying our algorithm and velocity structure was classified quantitatively to evaluate rippability for engineering works.