• Title/Summary/Keyword: 텍스트 영상 분할

Search Result 46, Processing Time 0.03 seconds

A Study on Feature Information Parsing of Video Image Using Improved Moment Invariant (향상된 불변모멘트를 이용한 동영상 이미지의 특징정보 분석에 관한 연구)

  • Lee, Chang-Soo;Jun, Moon-Seog
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.4
    • /
    • pp.450-460
    • /
    • 2005
  • Today, multimedia information is used on the internet and various social areas by rapid development of computer and communication technology. Therefor, the usage is growing dramatically. Multimedia information analysis system is basically based on text. So, there are many difficult problems like expressing ambiguity of multimedia information, excessive burden of works in appending notes and a lack of objectivity. In this study, we suggest a method which uses color and shape information of multimedia image partitions efficiently analyze a large amount of multimedia information. Partitions use field growth and union method. To extract color information, we use distinctive information which matches with a representative color from converting process from RGB(Red Green Blue) to HSI(Hue Saturation Intensity). Also, we use IMI(Improved Moment Invariants) which target to only outline pixels of an object and execute computing as shape information.

  • PDF

An Implementation of Cut Detection using Edge Image (에지 이미지를 사용한 컷 검출의 구현)

  • Kim, Sul-Ho;Choi, Hyung-Il;Kim, Gye-Young
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2011.01a
    • /
    • pp.51-53
    • /
    • 2011
  • 최근에는 텍스트정보 보다 동영상정보를 다루는 일이 많아졌고 그에 따라 동영상 데이터의 분할, 색인, 검색 등을 위해 장면 전환 검출이 필요하게 되었다. 장면 전환 검출 기술은 비디오 데이터의 장면 변화가 발생하는 경계를 검출하는 기술이다. 본 논문에서는 에지 이미지를 이용한 장면전환 검출과 이를 위한 임계값 설정, 그리고 결과에서 중복된 이미지와 오 검출 된 이미지를 줄여줄 수 있는 구현에 대하여 실험결과를 바탕으로 설명한다.

  • PDF

Word Segmentation Algorithm for Handwritten Documents based on k-means Clustering (k-평균 클러스터링을 이용한 필기 문서 영상의 단어 분리법)

  • Ryu, Jewoong;Cho, Nam Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2014.06a
    • /
    • pp.38-41
    • /
    • 2014
  • 본 논문에서는 필기 문서 영상을 분석하여 단어 단위로 요소들을 분할하는 방법을 제안한다. 일반적으로 인쇄 문서에 비하여 필기 문서에서는 글자 간 간격이 일정하지 않을 뿐만 아니라 필기자 또는 작성된 언어에 따라 특성이 매우 다르게 나타나기 때문에 단어를 분리하는 것은 어려운 문제로 간주되었고 많은 연구가 진행되었다. 제안하는 방법은 이 문제를 해결하기 위하여 글자 획의 두께를 고려하여 정규화시킨 각 연결 요소간 간격과 간격 안에 존재하는 글자 픽셀의 수로 구성된 2 차원의 특징값을 추출하였다. 이 특징값을 바탕으로, 제안하는 방법은 k-평균 클러스터링을 이용하여 각 텍스트라인을 구성하는 연결 요소간 간격을 단어 사이의 간격과 단어 내부 글자간의 간격으로 분류하였다. ICDAR 2013 Handwriting Segmentation Contest 데이터베이스에 대한 실험 결과 제안하는 방법은 가장 우수한 성능을 나타내었다.

  • PDF

Cut detection methods of real-time image sequences using color characteristics (컬러 특성을 이용한 실시간 동영상의 cut detection 기법)

  • Park, Jin-Nam;Lee, Jae-Duck;Huh, Young
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.39 no.1
    • /
    • pp.67-74
    • /
    • 2002
  • A study on image searching and management techniques is actively developed by user requirements for multimedia information that are existing as images, audios, texts data from various information processing devices. If we can automatically detect and segment changing scenes from real-time image sequences, we can improve an effectiveness of image searching systems. In this paper, we propose cut detection techniques based on image color distribution and we evaluated its performance on various real-time image sequences. Results of experiments show that the proposed method are robust on various image patterns than color histogram method using statistical informations of images. Also, these methods can be used for cut detection on real-time image sequences.

Class-Agnostic 3D Mask Proposal and 2D-3D Visual Feature Ensemble for Efficient Open-Vocabulary 3D Instance Segmentation (효율적인 개방형 어휘 3차원 개체 분할을 위한 클래스-독립적인 3차원 마스크 제안과 2차원-3차원 시각적 특징 앙상블)

  • Sungho Song;Kyungmin Park;Incheol Kim
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.7
    • /
    • pp.335-347
    • /
    • 2024
  • Open-vocabulary 3D point cloud instance segmentation (OV-3DIS) is a challenging visual task to segment a 3D scene point cloud into object instances of both base and novel classes. In this paper, we propose a novel model Open3DME for OV-3DIS to address important design issues and overcome limitations of the existing approaches. First, in order to improve the quality of class-agnostic 3D masks, our model makes use of T3DIS, an advanced Transformer-based 3D point cloud instance segmentation model, as mask proposal module. Second, in order to obtain semantically text-aligned visual features of each point cloud segment, our model extracts both 2D and 3D features from the point cloud and the corresponding multi-view RGB images by using pretrained CLIP and OpenSeg encoders respectively. Last, to effectively make use of both 2D and 3D visual features of each point cloud segment during label assignment, our model adopts a unique feature ensemble method. To validate our model, we conducted both quantitative and qualitative experiments on ScanNet-V2 benchmark dataset, demonstrating significant performance gains.

(<한국어 립씽크를 위한 3D 디자인 시스템 연구>)

  • Shin, Dong-Sun;Chung, Jin-Oh
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02b
    • /
    • pp.362-369
    • /
    • 2006
  • 3 차원 그래픽스에 적용하는 한국어 립씽크 합성 체계를 연구하여, 말소리에 대응하는 자연스러운 립씽크를 자동적으로 생성하도록 하는 디자인 시스템을 연구 개발하였다. 페이셜애니메이션은 크게 나누어 감정 표현, 즉 표정의 애니메이션과 대화 시 입술 모양의 변화를 중심으로 하는 대화 애니메이션 부분으로 구분할 수 있다. 표정 애니메이션의 경우 약간의 문화적 차이를 제외한다면 거의 세계 공통의 보편적인 요소들로 이루어지는 반면 대화 애니메이션의 경우는 언어에 따른 차이를 고려해야 한다. 이와 같은 문제로 인해 영어권 및 일본어 권에서 제안되는 음성에 따른 립싱크 합성방법을 한국어에 그대로 적용하면 청각 정보와 시각 정보의 부조화로 인해 지각의 왜곡을 일으킬 수 있다. 본 연구에서는 이와 같은 문제점을 해결하기 위해 표기된 텍스트를 한국어 발음열로 변환, HMM 알고리듬을 이용한 입력 음성의 시분할, 한국어 음소에 따른 얼굴특징점의 3 차원 움직임을 정의하는 과정을 거쳐 텍스트와 음성를 통해 3 차원 대화 애니메이션을 생성하는 한국어 립싱크합성 시스템을 개발 실제 캐릭터 디자인과정에 적용하도록 하였다. 또한 본 연구는 즉시 적용이 가능한 3 차원 캐릭터 애니메이션뿐만 아니라 아바타를 활용한 동적 인터페이스의 요소기술로서 사용될 수 있는 선행연구이기도 하다. 즉 3 차원 그래픽스 기술을 활용하는 영상디자인 분야와 HCI 에 적용할 수 있는 양면적 특성을 지니고 있다. 휴먼 커뮤니케이션은 언어적 대화 커뮤니케이션과 시각적 표정 커뮤니케이션으로 이루어진다. 즉 페이셜애니메이션의 적용은 보다 인간적인 휴먼 커뮤니케이션의 양상을 지니고 있다. 결국 인간적인 상호작용성이 강조되고, 보다 편한 인간적 대화 방식의 휴먼 인터페이스로 그 미래적 양상이 변화할 것으로 예측되는 아바타를 활용한 인터페이스 디자인과 가상현실 분야에 보다 폭넓게 활용될 수 있다.

  • PDF

Design and Implementation of Automated Detection System of Personal Identification Information for Surgical Video De-Identification (수술 동영상의 비식별화를 위한 개인식별정보 자동 검출 시스템 설계 및 구현)

  • Cho, Youngtak;Ahn, Kiok
    • Convergence Security Journal
    • /
    • v.19 no.5
    • /
    • pp.75-84
    • /
    • 2019
  • Recently, the value of video as an important data of medical information technology is increasing due to the feature of rich clinical information. On the other hand, video is also required to be de-identified as a medical image, but the existing methods are mainly specialized in the stereotyped data and still images, which makes it difficult to apply the existing methods to the video data. In this paper, we propose an automated system to index candidate elements of personal identification information on a frame basis to solve this problem. The proposed system performs indexing process using text and person detection after preprocessing by scene segmentation and color knowledge based method. The generated index information is provided as metadata according to the purpose of use. In order to verify the effectiveness of the proposed system, the indexing speed was measured using prototype implementation and real surgical video. As a result, the work speed was more than twice as fast as the playing time of the input video, and it was confirmed that the decision making was possible through the case of the production of surgical education contents.

A study on content strategy for long-term exposure of YouTube's 'Trending' (유튜브 '인기급상승' 장기 노출을 위한 콘텐츠 전략에 관한 연구)

  • Lee, Min-Young;Byun, Guk-Do;Choi, Sang-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.4
    • /
    • pp.359-372
    • /
    • 2022
  • This study aimed to derive a YouTube content strategy that can be exposed to Trending for a long time by comparing the features of 20 channels in the short/long term using 'YouTube Trending' data in 2021. First, through Pearson's correlation analysis, we found that various factors such as 'the number of title or tag letters' related to long-term exposure, and set this as an index to compare features. As a result, 1)'video title' of about 40-45 letters without excessive special characters, 2)'video length' within 10 minutes, 3)'Video description' is effective when writing 2-3 sentences and adding SNS information or including 3 key tags. Also, it would be more effective if you set key tag pairs such as (먹방, mukbang), (역대급, 레전드) derived through text mining. Through this, the channel will spread globally, bringing various advantages, and will be used as an indicator to evaluate the globality of the channel.

A Feature -Based Word Spotting for Content-Based Retrieval of Machine-Printed English Document Images (내용기반의 인쇄체 영문 문서 영상 검색을 위한 특징 기반 단어 검색)

  • Jeong, Gyu-Sik;Gwon, Hui-Ung
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.10
    • /
    • pp.1204-1218
    • /
    • 1999
  • 문서영상 검색을 위한 디지털도서관의 대부분은 논문제목과/또는 논문요약으로부터 만들어진 색인에 근거한 제한적인 검색기능을 제공하고 있다. 본 논문에서는 영문 문서영상전체에 대한 검색을 위한 단어 영상 형태 특징기반의 단어검색시스템을 제안한다. 본 논문에서는 검색의 효율성과 정확도를 높이기 위해 1) 기존의 단어검색시스템에서 사용된 특징들을 조합하여 사용하며, 2) 특징의 개수 및 위치뿐만 아니라 특징들의 순서를 포함하여 매칭하는 방법을 사용하며, 3) 특징비교에 의해 검색결과를 얻은 후에 여과목적으로 문자인식을 부분적으로 적용하는 2단계의 검색방법을 사용한다. 제안된 시스템의 동작은 다음과 같다. 문서 영상이 주어지면, 문서 영상 구조가 분석되고 단어 영역들의 조합으로 분할된다. 단어 영상의 특징들이 추출되어 저장된다. 사용자의 텍스트 질의가 주어지면 이에 대응되는 단어 영상이 만들어지며 이로부터 영상특징이 추출된다. 이 참조 특징과 저장된 특징들과 비교하여 유사한 단어를 검색하게 된다. 제안된 시스템은 IBM-PC를 이용한 웹 환경에서 구축되었으며, 영문 문서영상을 이용하여 실험이 수행되었다. 실험결과는 본 논문에서 제안하는 방법들의 유효성을 보여주고 있다. Abstract Most existing digital libraries for document image retrieval provide a limited retrieval service due to their indexing from document titles and/or the content of document abstracts. This paper proposes a word spotting system for full English document image retrieval based on word image shape features. In order to improve not only the efficiency but also the precision of a retrieval system, we develop the system by 1) using a combination of the holistic features which have been used in the existing word spotting systems, 2) performing image matching by comparing the order of features in a word in addition to the number of features and their positions, and 3) adopting 2 stage retrieval strategies by obtaining retrieval results by image feature matching and applying OCR(Optical Charater Recognition) partly to the results for filtering purpose. The proposed system operates as follows: given a document image, its structure is analyzed and is segmented into a set of word regions. Then, word shape features are extracted and stored. Given a user's query with text, features are extracted after its corresponding word image is generated. This reference model is compared with the stored features to find out similar words. The proposed system is implemented with IBM-PC in a web environment and its experiments are performed with English document images. Experimental results show the effectiveness of the proposed methods.

Sign Language Dataset Built from S. Korean Government Briefing on COVID-19 (대한민국 정부의 코로나 19 브리핑을 기반으로 구축된 수어 데이터셋 연구)

  • Sim, Hohyun;Sung, Horyeol;Lee, Seungjae;Cho, Hyeonjoong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.8
    • /
    • pp.325-330
    • /
    • 2022
  • This paper conducts the collection and experiment of datasets for deep learning research on sign language such as sign language recognition, sign language translation, and sign language segmentation for Korean sign language. There exist difficulties for deep learning research of sign language. First, it is difficult to recognize sign languages since they contain multiple modalities including hand movements, hand directions, and facial expressions. Second, it is the absence of training data to conduct deep learning research. Currently, KETI dataset is the only known dataset for Korean sign language for deep learning. Sign language datasets for deep learning research are classified into two categories: Isolated sign language and Continuous sign language. Although several foreign sign language datasets have been collected over time. they are also insufficient for deep learning research of sign language. Therefore, we attempted to collect a large-scale Korean sign language dataset and evaluate it using a baseline model named TSPNet which has the performance of SOTA in the field of sign language translation. The collected dataset consists of a total of 11,402 image and text. Our experimental result with the baseline model using the dataset shows BLEU-4 score 3.63, which would be used as a basic performance of a baseline model for Korean sign language dataset. We hope that our experience of collecting Korean sign language dataset helps facilitate further research directions on Korean sign language.