• Title/Summary/Keyword: 텍스트 영상 분할

Search Result 46, Processing Time 0.033 seconds

A System for the Decomposition of Text Block into Words (텍스트 영역에 대한 단어 단위 분할 시스템)

  • Jeong, Chang-Boo;Kwag, Hee-Kue;Jeong, Seon-Hwa;Kim, Soo-Hyung
    • Annual Conference of KIPS
    • /
    • 2000.10a
    • /
    • pp.293-296
    • /
    • 2000
  • 본 논문에서는 주제어 인식에 기반한 문서영상의 검색 및 색인 시스템에 적용하기 위한 단어 단위 분한 시스템을 제안한다. 제안 시스템은 영상 전처리, 문서 구조 분석을 통해 추출된 텍스트 영역을 입력으로 단어 단위 분할을 수행하는데, 텍스트 영역에 대해 텍스트 라인을 분할하고 분할된 텍스트 라인을 단어 단위로 분할하는 계층적 접근 방법을 사용한다. 텍스트라인 분할은 수평 방향 투영 프로파일을 적용하여 분할 지점을 구한다. 그리고 단어 분할은 연결요소들을 추출한 후 연결요소간의 gap 정보를 구하고, gap 군집화 기법을 사용하여 단어 단위 분한 지점을 구한다. 이때 단어 단위 분할의 성능을 저하시키는 특수기호에 대해서는 휴리스틱 정보를 이용하여 검출한다. 제안 시스템의 성능 평가는 50개의 텍스트 영역에 적용하여 99.83%의 정확도를 얻을 수 있었다.

  • PDF

A Still Image Compression System with a High Quality Text Compression Capability (고 품질 텍스트 압축 기능을 지원하는 정지영상 압축 시스템)

  • Lee, Je-Myung;Lee, Ho-Suk
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.3
    • /
    • pp.275-302
    • /
    • 2007
  • We propose a novel still image compression system which supports a high quality text compression function. The system segments the text from the image and compresses the text with a high quality. The system shows 48:1 high compression ratio using context-based adaptive binary arithmetic coding. The arithmetic coding performs the high compression by the codeblocks in the bitplane. The input of the system consists of a segmentation mode and a ROI(Region Of Interest) mode. In segmentation mode, the input image is segmented into a foreground consisting of text and a background consisting of the remaining region. In ROI mode, the input image is represented by the region of interest window. The high quality text compression function with a high compression ratio shows that the proposed system can be comparable with the JPEG2000 products. This system also uses gray coding to improve the compression ratio.

A Study Video using Image and Voice Search (음성과 이미지를 이용한 동영상 검색에 관한 연구)

  • Sin, In-Gyeong;Park, Sung-Hyun;Ahn, Hyo-Chang;Rhee, Sang-Burm
    • Annual Conference of KIPS
    • /
    • 2012.11a
    • /
    • pp.568-571
    • /
    • 2012
  • 정보화 사회의 정보 기반 구조로서, 고속 정보망의 구축, 개인용 컴퓨터의 급속한 보급, 멀티미디어 기술의 발전 등으로 인하여 정보 서비스의 새로운 장이 열리고 있다. 동영상 데이터는 텍스트만이 아니라 영상정보, 음성정보등 각종 의미있는 다양한 멀티미디어 정보를 포함하고 있다. 본 논문에서는 동영상에서 음성과 영상을 분리하여 음성을 이용하여 음성열을 분할 및 복원하여 음성을 텍스트로 변환하여 텍스트색인파일을 만들고 영상은 이미지를 분할 및 히스토그램을 사용하여 이미지 샷을 검출하여 두 색인파일을 이용하여 인덱싱을 하여 동영상 검색에 활용한다.

Three-Level Color Clustering Algorithm for Binarizing Scene Text Images (자연영상 텍스트 이진화를 위한 3단계 색상 군집화 알고리즘)

  • Kim Ji-Soo;Kim Soo-Hyung
    • The KIPS Transactions:PartB
    • /
    • v.12B no.7 s.103
    • /
    • pp.737-744
    • /
    • 2005
  • In this paper, we propose a three-level color clustering algerian for the binarization of text regions extracted from natural scene images. The proposed algorithm consists of three phases of color segmentation. First, the ordinary images in which the texts are well separated from the background, are binarized. Then, in the second phase, the input image is passed through a high pass filter to deal with those affected by natural or artificial light. Finally, the image Is passed through a low pass filter to deal with the texture in texts and/or background. We have shown that the proposed algorithm is more effective used gray-information binarization algorithm. To evaluate the effectiveness of the proposed algorithm we use a commercial OCR software ARMI 6.0 to observe the recognition accuracies on the binarized images. The experimental results on word and character recognition show that the proposed approach is more accurate than conventional methods by over $35\%$.

Text Region Extraction of Natural Scene Images using Gray-level Information and Split/Merge Method (명도 정보와 분할/합병 방법을 이용한 자연 영상에서의 텍스트 영역 추출)

  • Kim Ji-Soo;Kim Soo-Hyung;Choi Yeong-Woo
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.6
    • /
    • pp.502-511
    • /
    • 2005
  • In this paper, we propose a hybrid analysis method(HAM) based on gray-intensity information from natural scene images. The HAM is composed of GIA(Gray-intensity Information Analysis) and SMA(Split/Merge Analysis). Our experimental results show that the proposed approach is superior to conventional methods both in simple and complex images.

Lossless Image Compression Using Lossless Symmetric Short Kernel Filter and Burrows-Wheeler Transformation (L-SSKE와 BWT를 이용한 무손실 영상 압축)

  • 고승권;윤정오;황찬식
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.299-302
    • /
    • 2000
  • 최근에 새로운 텍스트 압축방법인 BWT(Burrows and Wheeler transformation)가 소개되었다. 이 변환은 우수한 텍스트 압축성능을 가지지만 텍스트와 영상의 다른 성질로 인해 영상에 직접 적용될 때 그다지 우수한 압축성능을 기대할 수 없다. 본 논문에서는L-SSKF(Lossless Symmetric Short Kernel Filter)를 사용하여 영상을 대역분할한 후에 BWT를 수행하여 무손실이면서 우수한 압축성능을 가지는 무손실 영상압축방법을 제안한다. 또한 압축성능의 향상을 위해 두과정의 중간에 화소예측방법인GAP(Gradient Adjusted Prediction)를 적용하여 성능개선을 비교하였다.

  • PDF

A New Method for Nonparametric Document Layout Analysis (매개변수에 무관한 새로운 문서 구조 분석 방법)

  • 류대석;강선미;이성환
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.482-484
    • /
    • 1999
  • 본 논문에서는 매개변수 없이 입력 문서 영상을 최대 동질 영역들로 분할한 다음, 각 동질 영역을 텍스트, 그림, 표 그리고 선으로 자동 분류하는 새로운 방법을 제안한다. 다단계 분석과 하향식 접근 방법을 사용하기 위하여 문서 영상을 피라미드 구조로 계층화하였으며, 어떤 영역을 분할할 지의 여부를 결정하기 위하여 그 영역의 주기성을 이용하여 판단하였다. 이러한 주기성 정보를 이용함으로써, 어떠한 매개변수 없이도 활자체 크기와 행간에 무관하게 텍스트 영역을 정확히 분석할 수 있었으며, 피라미드 구조를 만드는데 걸리는 시간이 질감 분석 접근방법보다 빠른 방법으로 설계되었다. Washington 대학의 문서 영상 데이터베이스를 이용한 실험 결과, 제안된 방법이 기존의 방법들보다 더 정확하게 문서 영상을 분할 및 분류할 수 있음을 확인할 수 있었다.

  • PDF

Corrupted Region Restoration based on 2D Tensor Voting (2D 텐서 보팅에 기반 한 손상된 텍스트 영상의 복원 및 분할)

  • Park, Jong-Hyun;Toan, Nguyen Dinh;Lee, Guee-Sang
    • The KIPS Transactions:PartB
    • /
    • v.15B no.3
    • /
    • pp.205-210
    • /
    • 2008
  • A new approach is proposed for restoration of corrupted regions and segmentation in natural text images. The challenge is to fill in the corrupted regions on the basis of color feature analysis by second order symmetric stick tensor. It is show how feature analysis can benefit from analyzing features using tensor voting with chromatic and achromatic components. The proposed method is applied to text images corrupted by manifold types of various noises. Firstly, we decompose an image into chromatic and achromatic components to analyze images. Secondly, selected feature vectors are analyzed by second-order symmetric stick tensor. And tensors are redefined by voting information with neighbor voters, while restore the corrupted regions. Lastly, mode estimation and segmentation are performed by adaptive mean shift and separated clustering method respectively. This approach is automatically done, thereby allowing to easily fill-in corrupted regions containing completely different structures and surrounding backgrounds. Applications of proposed method include the restoration of damaged text images; removal of superimposed noises or streaks. We so can see that proposed approach is efficient and robust in terms of restoring and segmenting text images corrupted.

Utilization of AdaBoost for Sub-image Detection in Screen Content (스크린 콘텐츠의 하위 영상 검출을 위한 AdaBoost의 활용)

  • Gil, Jong-In;Kim, Manbae
    • Annual Conference of KIPS
    • /
    • 2015.04a
    • /
    • pp.864-865
    • /
    • 2015
  • 웹페이지와 같은 스크린 콘텐츠는 카메라로부터 획득할 수 있는 자연영상과 달리 텍스트, 로고, 아이콘 및 하위 영상과 같은 여러 가지 요소들을 포함하고 있고, 각 요소들은 서로 다른 형식의 정보를 사용자에게 전달한다. 본 논문에서는 윈도우 영상을 지역적인 특성에 따라 다수의 블록으로 분할한 후, 분할된 각 영역을 배경, 텍스트, 하위영상으로 분류하였고, 기계학습 기반의 알고리즘이 하위 영상 검출에도 좋은 접근법이 될 수 있음을 증명하기 위해 AdaBoost를 이용하였다. 실험결과로부터 93.4%의 검출률, 13%의 거짓 긍정률을 보임으로서, 제안방법이 효과적임을 입증하였다.

A Study on the Extraction of E-mail Region in Unconstraint Calling Card Images (무제약 명함 영상에서의 E-mail 영역 검출에 관한 연구)

  • 신상철;정재영
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.7 no.5
    • /
    • pp.183-189
    • /
    • 2002
  • In this paper, we propose an algorithm to extract the E-mail address in calling card images. Firstly, text regions are separated from background. in the image. To do this, the properties of e-mail addresses and the texture features in the image is used. And then, each text region is explored to find the candidates of e-mail region. Finally, each candidate is divided into characters to find at-symbol(@), that is, e-mail region. The experimental results show hit-ratio over 93.3% for the various kind of calling cards containing different fonts, background images, caricatures.

  • PDF