GAN(Generative Adversarial Network)은 정해진 학습 데이터에서 정해진 생성자와 구분자가 서로 각각에게 적대적인 관계를 유지하며 동시에 서로에게 생산적인 관계를 유지하며 가능한 긍정적인 영향을 주며 학습하는 기계학습 분야이다. 전통적인 문장 생성은 단어의 통계적 분포를 기반으로 한 마르코프 결정 과정(Markov Decision Process)과 순환적 신경 모델(Recurrent Neural Network)을 사용하여 학습시킨다. 이러한 방법은 문장 생성과 같은 연속된 데이터를 기반으로 한 모델들의 표준 모델이 되었다. GAN은 표준모델이 존재하는 해당 분야에 새로운 모델로써 다양한 시도가 시도되고 있다. 하지만 이러한 모델의 시도에도 불구하고, 지금까지 해결하지 못하고 있는 다양한 문제점이 존재한다. 이 논문에서는 다음과 같은 두 가지 문제점에 집중하고자 한다. 첫째, Sequential 한 데이터 처리에 어려움을 겪는다. 둘째, 무작위로 생성하기 때문에 사용자가 원하는 데이터만 출력되지 않는다. 본 논문에서는 이러한 문제점을 해결하고자, 부분적인 정답 제공을 통한 조건별 생산적 적대 생성망을 설계하여 이 방법을 사용하여 해결하였다. 첫째, Sequence to Sequence 모델을 도입하여 Sequential한 데이터를 처리할 수 있도록 하여 원시적인 텍스트를 생성할 수 있게 하였다. 둘째, 부분적인 정답 제공을 통하여 문장의 생성 조건을 구분하였다. 결과적으로, 제안하는 기법들로 원시적인 감정 텍스트를 생성할 수 있었다.
Ha, Hyunsoo;Woo, Seungmin;Yim, Junyeob;Hwang, Byung-Yeon
Annual Conference of KIPS
/
2015.04a
/
pp.680-682
/
2015
최근 스마트폰의 보급으로 소셜 네트워크 서비스를 이용하는 사용자들이 급증하였다. 그 중 트위터는 정보의 빠른 전파력과 확산성으로 인해 현실에서 발생한 이벤트를 탐지하는 도구로 활용하는 것이 가능하다. 따라서 트위터 사용자 개개인을 하나의 센서로 가정하고 그들이 작성한 트윗 텍스트를 분석한다면 이벤트 탐지의 도구로써 활용할 수 있다. 이와 관련된 연구들은 이벤트 발생 위치를 추적하기 위해 GPS좌표를 이용하지만 트위터 사용자들이 위치정보 공개에 회의적인 점을 감안하면 명확한 한계점으로 제시될 수 있다. 이에 본 논문에서는 트위터에서 제공하는 위치정보를 이용하지 않고, 트윗 텍스트에서 위치정보를 추적하는 방법을 제시하였다. 트윗 텍스트에서 키워드간의 관계를 고려하여 이벤트의 사실여부를 결정하였으며, 실험을 통해 기존 매체들보다 빠른 탐지를 보임으로써 제안된 시스템의 필요성을 보였다.
This article aims to establish the model of textual communication and its schema. To do this, we must identify the characteristics of textual communication, different from that of the oral, because the model of communication is usually done to show the structure of oral communication. Moreover, we must clarify the status text as '${\acute{e}}nonc{\acute{e}}$', that is to say product of the act of enunciation. The study of the text has now reached to achieve from the perspective of pragmatics, overcoming the structural point of view that dominates long text linguistics. And now, we need to enrich the theoretical basis of the pragmatics of text. Then the search of elements necessary to develop the model and pattern of textual communication can help to establish the elements used to form the theoretical basis. To clarify the characteristics of textual communication, we needed to explain the present communication by the position of reader and the point of view of textual reference. The schema that we proposed is not perfect, but there are still issues to think to complete it. For example, one must take into account the plurality of readers and reflect the relationship between interpretive texts in this schema, etc. This kind of problem is not only required to complete the schema but also to strengthen the basis of the theory of textual communication and the pragmatics of text.
The Buckwheat Season, evaluated as the best of Lee Hyo-seok's literature, is one of the short stories that represent Korean literature. However, vivid literary expressions such as lyrical and beautiful depictions, figurative expressions and dialects, which show the Korean beauty, rather make learners have difficulty and become a factor that fails in reading comprehension. Thus, it is necessary to revise and present the text modified for the learners' language level. The methods of revising a literary text include the revision of linguistic elements such as cryptic vocabulary or sentence structure and the revision of the composition of the text, e.g. suggestion of characters or plot, or insertion of illustration. The methods of revising the language of the text can be divided into methods of simplification and detailing. However, in the process of revising the text, many depend on the adapter's subjective perception, not revising it with objective criteria. This paper revised the text, utilizing by the Academy of Korean Studies, , and the by the National Institute of Korean Language to secure objectivity in revising the text.
The purpose of this study is to identify the emotional language of math teachers in math class using text mining techniques. For this purpose, we collected the discourse data of the teachers in the class by using the excellent class video. The analysis of the extracted unstructured data proceeded to three stages: data collection, data preprocessing, and text mining analysis. According to text mining analysis, there was few emotional language in teacher's response in mathematics class. This result can infer the characteristics of mathematics class in the aspect of affective domain.
This study focused on the games that were in the spotlight during the One Source Multi-use era, analyzing game based movies and the games. Through this, we wanted to examine the phenomena, changes, and in-depth meanings of the genre and grammar. Using Vogler's "12 Stages of the Hero Journey" and Greimas's "Model actantie" the three works of Need for Speed, Assassin Creed and Warcraft were cross-analyzed. Through this analysis, we looked at the structure of the discourse and identified the significant messages brought by the change in text.
The Journal of the Convergence on Culture Technology
/
v.7
no.2
/
pp.149-156
/
2021
Text mining is one of the useful tools to discover public opinion and perception regarding political issues from big data. It is very common that users of social media express their opinion with newly-coined words such as slang and emoji. However, those new words are not effectively captured by traditional text mining methods that process text data using a language dictionary. In this study, we propose effective methods to extract newly-coined words that connote the political stance and opinion of users. With various text mining techniques, I attempt to discover the context and the political meaning of the new words.
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.219-224
/
2022
최근 딥러닝이 상식 정보를 추론하지 못하거나, 해석 불가능하다는 한계점을 보완하기 위해 지식 그래프를 기반으로 자연어 텍스트를 생성하는 연구가 중요하게 수행되고 있다. 그러나 이를 위해서 대량의 지식 그래프와 이에 대응되는 문장쌍이 요구되는데, 이를 구축하는 데는 시간과 비용이 많이 소요되는 한계점이 존재한다. 또한 하나의 그래프에 다수의 문장을 생성할 수 있기에 구축자 별로 품질 차이가 발생하게 되고, 데이터 균등성에 문제가 발생하게 된다. 이에 본 논문은 공개된 지식 그래프인 디비피디아를 활용하여 전문가의 도움 없이 자동으로 데이터를 쉽고 빠르게 구축하는 방법론을 제안한다. 이를 기반으로 KoBART와 mBART, mT5와 같은 한국어를 포함한 대용량 언어모델을 활용하여 문장 생성 실험을 진행하였다. 실험 결과 mBART를 활용하여 미세 조정 학습을 진행한 모델이 좋은 성능을 보였고, 자연스러운 문장을 생성하는데 효과적임을 확인하였다.
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.87-90
/
2020
표 질의응답은 반-정형화된 표 데이터에서 질문에 대한 답을 찾는 문제이다. 본 연구에서는 한국어 표 질의응답을 위한 표 데이터에 적합한 TAPAS를 이용한 언어모델 사전학습 방법과 표에서 정답이 있는 셀을 예측하고 선택된 셀에서 정확한 정답의 경계를 예측하기 위한 표 질의응답 모형을 제안한다. 표 사전학습을 위해서 약 10만 개의 표 데이터를 활용했으며, 텍스트 데이터에 사전학습된 BERT 모델을 이용하여 TAPAS를 사전학습한 모델이 가장 좋은 성능을 보였다. 기계독해 모델을 적용했을 때 EM 46.8%, F1 63.8%로 텍스트 텍스트에 사전학습된 모델로 파인튜닝한 것과 비교하여 EM 6.7%, F1 12.9% 향상된 것을 보였다. 표 질의응답 모델의 경우 TAPAS를 통해 생성된 임베딩을 이용하여 행과 열의 임베딩을 추출하고 TAPAS 임베딩, 행과 열의 임베딩을 결합하여 기계독해 모델을 적용했을 때 EM 63.6%, F1 76.0%의 성능을 보였다.
Yu, Yeong UK;Seong, Yeon Jeong;Park, Tae Gyeong;Jung, Young Hun
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.193-193
/
2021
전 세계적으로 기후변화가 지속되면서 그에 따른 자연재난의 강도와 발생 빈도가 증가하고 있다. 자연재난의 발생 유형 중 집중호우와 태풍으로 인한 수문학적 재난이 대부분을 차지하고 있으며, 홍수피해는 지역적 수문학적 특성에 따라 피해의 규모와 범위가 달라지는 경향을 보인다. 이러한 이질적인 피해를 관리하기 위해서는 많은 홍수피해 정보를 수집하는 것이 필연적이다. 정보화 시대인 요즘 방대한 양의 데이터가 발생하면서 '빅데이터', '머신러닝', '인공지능'과 같은 말들이 다양한 분야에서 주목을 받고 있다. 홍수피해 정보에 대해서도 과거 국가에서 발간하는 정보외에 인터넷에는 뉴스기사나 SNS 등 미디어를 통하여 수많은 정보들이 생성되고 있다. 이러한 방대한 규모의 데이터는 미래 경쟁력의 우위를 좌우하는 중요한 자원이 될 것이며, 홍수대비책으로 활용될 소중한 정보가 될 수 있다. 본 연구는 인터넷기반으로 한 홍수피해 현상 조사를 통해 홍수피해 규모에 따라 발생하는 홍수피해 현상을 파악하고자 하였다. 이를 위해 과거에 발생한 홍수피해 사례를 조사하여 강우량, 홍수피해 현상 등 홍수피해 관련 정보를 조사하였다. 홍수피해 현상은 뉴스기사나 보고서 등 미디어 정보를 활용하여 수집하였으며, 수집된 비정형 형태의 텍스트 데이터를 '텍스트 마이닝(Text Mining)' 기법을 이용하여 데이터를 정형화 및 주요 홍수피해 현상 키워드를 추출하여 데이터를 수치화하여 표현하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.