• Title/Summary/Keyword: 텍스트 연구

Search Result 3,492, Processing Time 0.036 seconds

Study of the text analysis and feature selection performance for emotional inference (텍스트 기반 감정 추정을 위한 특징 추출 및 선택기법에 따른 성능 연구)

  • Kim, Hanjoo;Ha, Heonseok;Park, Seunghyun;Yoon, Sungroh
    • Annual Conference of KIPS
    • /
    • 2014.11a
    • /
    • pp.876-878
    • /
    • 2014
  • 인터넷 사용량이 급증하고 사용자들이 생성하는 데이터의 양이 증가함에 따라 사용자 데이터 분석은 객관적인 정보 탐색과 분석을 넘어 주관적인 감정을 분석하는 데까지 시도되고 있다. 이러한 감정 분석은 사업, 행정, 외교 등의 다양한 분야에 걸쳐 용용 될 수 있다. 본 연구에서는 텍스트 데이터를 주요 분석 대상으로 하여 문장 구성의 다양한 요소를 특징화하고, 특징화된 문장에 대해 다양한 서포트 벡터머신을 통한 학습을 시도함으로써 텍스트가 내포한 감정을 추측한다. 다양한 특징화 방법을 적용하되, 낮은 밀도가 될 것으로 추측되는 데이터 매트릭스의 차원 감쇄를 위해 정보엔트로피 기반의 특징 선택기법을 적용한다.

Annotation Anchoring Methods in Structured Document Environments (구조문서 환경에서 Annotation의 앵커링 기법)

  • 손원성;김재경;최윤철;임순범
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.05b
    • /
    • pp.476-479
    • /
    • 2003
  • 전자문서 환경에서의 annotation은 그 특성상 원본문서의 내용이 변경될 경우 annotation의 대상인 앵커를 더 이상 참조할 수 없게 된다. 따라서 annotation 시스템에서는 반드시 원본문서 변경에 대한 앵커링 기능을 필요로 한다. 그러나 기존 연구에서는 앵커 텍스트의 변경을 고려하지 않거나 일반 텍스트 문서만을 대상으로 한다. 본 논문에서는 XML과 같은 구조문서 환경에서의 annotation 앵커링 기법을 제안한다. 제안된 기법에서는 XML 환경에서 앵커 텍스트 및 path정보에 대한 단계별 앵커링 과정을 수행한다. 또한 본 논문에서는 제안된 기법에 근거한 사용자 인터페이스를 제공한다. 그 결과 제안된 기법 및 시스템에서는 구조문서 환경에서 기존 연구 보다 심도 있는 앵커링을 보장하며 동시에 IETM, cyber-class, eLearing, semantic web 등의 다양한 분야에 효과적으로 적용 가능하다.

  • PDF

A Comparison Study on the Application Method of Naive Bayes for Text Classification (텍스트 분류의 성능 향상을 위한 나이브 베이즈 응용 기법 비교 연구)

  • Heo, Jae-Hee;Park, Eun-Young;Park, Young-Ho
    • Annual Conference of KIPS
    • /
    • 2015.04a
    • /
    • pp.734-736
    • /
    • 2015
  • 텍스트를 분류해내는 일이 점점 중요해지고 있는 현 시점에서 기계학습은 다른 기법들보다도 가장 효과적인 성능을 드러낸다. 그 중에서도 특히 나이브 베이즈 분류기는 간절하고 효율적으로 알려진 기계학습 모델 중에 하나이다. 본 논문은 보다 효과적인 텍스트 분류를 위해 나이브 베이즈의 기법들을 응용 및 개선하고자 한 기존의 연구들을 소개하고, 이를 분석하고자 한다.

Stock Prediction Using News Text Mining and Time Series Analysis (뉴스 텍스트 마이닝과 시계열 분석을 이용한 주가예측)

  • Ahn, Sung-Won;Cho, Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06c
    • /
    • pp.364-369
    • /
    • 2010
  • 본 논문에서는 뉴스 텍스트 마이닝을 수행하여 2005년 1월부터 2008년 12월까지 4년 간의 뉴스 데이터에 대해 주가에 호재인지 악재인지 여부에 대해 학습을 하고, 이를 근거로 신규 발행된 뉴스가 주가 상승 또는 하락에 영향을 미치는지를 예측하는 알고리즘을 제안한다. 뉴스 텍스트 마이닝을 위해 변형된 Bag of Words 모델과 Naive Bayesian 분류기법을 사용하였으며, 특히 주가 예측에 있어서 뉴스 마이닝에만 의존하던 기존의 관련 연구와는 달리 예측의 정확성을 높이기 위해 주가의 시계열 데이터 분석기법인 RSI를 추가로 작용하였다. 2009년 11월부터 2010년 2월까지 4개월간 42,355건의 뉴스 데이터에 대해 실험한 결과, 기존 연구 대비 의미 있는 결과인 55.01%의 예측성공률을 얻었다.

  • PDF

A study on the Rhetorical Strategies of Academic Text Construction for KAP learners (학문 목적 학습자를 위한 학술적 텍스트 구성의 수사적 전략 연구)

  • Hong, Yunhye
    • Journal of Korean language education
    • /
    • v.28 no.2
    • /
    • pp.235-264
    • /
    • 2017
  • The purpose of this study is to explore and categorize the rhetorical strategies of text construction in research articles and to provide data for academic writing education for foreign graduate students. This study analyzes 30 research articles by Korean writers from Korean language and Korean language education fields, and categorizes the rhetorical strategies according to the roles of the writer as a RA form composer, a manager of research content, and a communicator. On the basis of the strategies, this study analyzes 18 term papers of foreign graduate students and inspects their weaknesses in using the rhetorical strategies. Based on the results of analysis, this study suggests rhetorical strategy education for KAP learners that emphasizes validity and clarifies argument along with attracting readers.

Opinion Mining on Movie Reviews using SNS Text Data (SNS 텍스트 데이터를 이용한 영화평 분석)

  • Cha, Soyun;Lee, Bong Gi;Lee, Ho;Wi, Seokcheol;Lee, Soowon
    • Annual Conference of KIPS
    • /
    • 2012.11a
    • /
    • pp.441-444
    • /
    • 2012
  • 오늘날 스마트폰의 보급으로 SNS는 급속도로 성장하였고, 매일 엄청난 분량의 텍스트 데이터가 생성되고 있다. 본 연구에서는 다른 매체에 비해 개인의 의견이 좀 더 거침없이 올라오는 SNS의 특징에 주목해 SNS의 텍스트 데이터를 대상으로 하는 평판 분석 기법을 제안한다. 제안 방법은 분석하고자 하는 대상에 대한 SNS 데이터를 수집하여 DB에 저장한 다음, 광고 제거 과정과 자동 띄어쓰기 과정 및 형태소 분석을 거친 후 감성 포함 여부 확인 과정과 극성 분류 과정으로 구성된다. 평판 분석을 위해 본 연구에서는 감성 단어 사전의 쾌-불쾌 수치와 활성화 수치를 사용한다. 분석 결과 모든 문서에 대한 극성 분류 정확도는 55%였고, 감성 포함 여부 확인 과정이 올바르게 수행된 문서에 대한 극성 분류 정확도는 82%였다.

AI Announcer : Information Transfer Software Using Artificial Intelligence Technology (AI 아나운서 : 인공지능 기술을 이용한 정보 전달 소프트웨어)

  • Kim, Hye-Won;Lee, Young-Eun;Lee, Hong-Chang
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.937-940
    • /
    • 2020
  • 본 논문은 AI 기술을 기반으로 텍스트 스크립트를 자동으로 인식하고 영상 합성 기술을 응용하여 텍스트 정보를 시각화하는 AI 아나운서 소프트웨어 연구에 대하여 기술한다. 기존의 AI 기반 영상 정보 전달 서비스인 AI 앵커는 텍스트를 인식하여 영상을 합성하는데 오랜 시간이 필요하였으며, 특정 인물 이미지로만 영상 합성이 가능했기 때문에 그 용도가 제한적이었다. 본 연구에서 제안하는 방법은 Tacotron 으로 새로운 음성을 학습 및 합성하여, LRW 데이터셋으로 학습된 모델을 사용하여 자연스러운 영상 합성 체계를 구축한다. 단순한 얼굴 이미지의 합성을 개선하고 다채로운 이미지 제작을 위한 과정을 간략화하여 다양한 비대면 영상 정보 제공 환경을 구성할 수 있을 것으로 기대된다.

Video Summarization with ChatGPT (ChatGPT 를 활용한 영상 요약 모델에 관한 연구)

  • Wonho Lee;Jungyu Kang;Nayoung Seong;Suhyeon Cho ;Youngjong Kim
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.694-695
    • /
    • 2023
  • 최근 ChatGPT 를 각 분야에 활용하는 연구가 활발하게 이루어지고 있다. ChatGPT 는 최신 자연어 처리 모델로, 텍스트를 통해 입출력을 진행한다. 본 논문에서는 이러한 ChatGPT 를 활용하여 영상을 효과적으로 요약할 수 있는 새로운 접근 방식을 제시한다. STT 기술을 사용하여 영상의 자막에 대한 텍스트 파일을 추출하고 이를 ChatGPT 로 요약한다. 최종적으로 기존 텍스트와의 유사도 분석을 통해 유사도가 높은 부분을 선택하여 영상을 편집하고 요약한다.

An Exploratory Study of Platform Government in Korea : Topic Modeling and Network Analysis of Public Agency Reports (한국 플랫폼 정부의 방향성 모색 : 공공기관 연구보고서에 대한 토픽 모델링과 네트워크 분석)

  • Nam, Hyun-Dong;Nam, Taewoo
    • Journal of Digital Convergence
    • /
    • v.18 no.2
    • /
    • pp.139-149
    • /
    • 2020
  • New platform governments will play a role to pull intelligent information technology to drive new ecological government innovation and sustainable development in which the government and people work together. On this, in order to establish the platform of the platform government, we will look at recent research trends and lay the foundation for future policy directions and research bases. using Text Mining method, and went through Topic modeling for the collected text data and network analysis was conducted. According to the result, based on latent topic, the stronger the connection center, the weaker the relationship. Through this study, we hope that discussions will take place in a variety of ways to improve the understanding of the supply and demand approach of Korea's platform government and implement appropriate change management methods such as service public base and service provision in accordance with the value and potential topics of platform government.

De-identifying Unstructured Medical Text and Attribute-based Utility Measurement (의료 비정형 텍스트 비식별화 및 속성기반 유용도 측정 기법)

  • Ro, Gun;Chun, Jonghoon
    • The Journal of Society for e-Business Studies
    • /
    • v.24 no.1
    • /
    • pp.121-137
    • /
    • 2019
  • De-identification is a method by which the remaining information can not be referred to a specific individual by removing the personal information from the data set. As a result, de-identification can lower the exposure risk of personal information that may occur in the process of collecting, processing, storing and distributing information. Although there have been many studies in de-identification algorithms, protection models, and etc., most of them are limited to structured data, and there are relatively few considerations on de-identification of unstructured data. Especially, in the medical field where the unstructured text is frequently used, many people simply remove all personally identifiable information in order to lower the exposure risk of personal information, while admitting the fact that the data utility is lowered accordingly. This study proposes a new method to perform de-identification by applying the k-anonymity protection model targeting unstructured text in the medical field in which de-identification is mandatory because privacy protection issues are more critical in comparison to other fields. Also, the goal of this study is to propose a new utility metric so that people can comprehend de-identified data set utility intuitively. Therefore, if the result of this research is applied to various industrial fields where unstructured text is used, we expect that we can increase the utility of the unstructured text which contains personal information.