• Title/Summary/Keyword: 텍스트 연구

Search Result 3,492, Processing Time 0.036 seconds

A Bloom filter-based Sentiment-aware Web Crawling Algorithm (블룸 필터를 이용한 감성 웹 문서 크롤링 알고리즘)

  • Na, Chul-Won;On, Byung-Won
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.69-74
    • /
    • 2018
  • 최근 빅 데이터와 인공지능의 발달과 함께 감성 분석에 대한 연구가 활발해지고 있다. 더불어 감성 분석을 위한 긍/부정 어휘가 풍부한 텍스트 문서들에 대한 수집의 필요성도 높아지고 있다. 본 논문은 긍/부정어휘가 풍부한 텍스트 문서들을 수집하는 기존의 수집 방법에 대한 문제점에 대하여 해결방안을 제시한다. 기존의 수집 방법으로 일단 모든 URL들을 저장하고 필터링 과정을 거쳐 긍/부정 어휘가 풍부한 텍스트 문서들을 수집하고자 한다면 불필요한 텍스트 문서 저장과 필터링 과정에서 메모리와 시간을 낭비하게 된다. 기존의 수집 방법에 블룸 필터라는 자료구조를 적용시켜 메모리와 시간을 낭비하게 되는 문제점을 해결하고자 한다.

  • PDF

A Feature Selection Technique for an Efficient Document Automatic Classification (효율적인 문서 자동 분류를 위한 대표 색인어 추출 기법)

  • 김지숙;문현정;김영지;우용태
    • Proceedings of the Korea Database Society Conference
    • /
    • 2001.06a
    • /
    • pp.295-302
    • /
    • 2001
  • 최근 대량의 텍스트 문서로부터 의미 있는 패턴이나 연관 규칙을 발견하기 위한 텍스트마이닝 기법에 대한 연구가 활발히 전개되고 있다. 하지만 비정형 텍스트 문서로부터 추출된 용어의 수는 불규칙적이고 일반적인 용어가 많이 추출되는 관계로 기존의 연관 규칙 탐사 방법을 사용하게 되면 무의미한 연관 규칙이 대량으로 생성되어 지식 정보를 효과적으로 검색하기 어렵다. 본 논문에서는 연관 규칙 탐사 기법을 이용하여 비감독학습 기법에 의해 대량의 문서를 효율적으로 분류하기 위한 대표 색인어 추출 기법을 제안하였다. 컴퓨터 분야의 논문을 대상으로 각 분야별 대표 색인어를 추출하여 유사한 문서끼리 분류하는 실험을 통해 제안된 방법의 효율성을 보였다.

  • PDF

The Effects of multimedia information diaplay on information processing (멀티미디어 정보 제시유형이 정보처리에 미치는 영향)

  • 조경자;한광희
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2000.05a
    • /
    • pp.31-36
    • /
    • 2000
  • 본 연구에서는 멀티미디어 환경에서 정보 제시 유형이 정보 처리에 어떤 영향을 미치는지를 알아보고자 하였다. 초등학교 아동을 대사으로 하여 텍스트와 나래이션을 제시한 조건, 텍스트와 애니매이션을 제시한 조건, 애니매이션과 나래이션을 제시한 조건에 따라 학습정도가 어떻게 달라지는지를 알아보았다. 학습 수행 평가는 학습자료를 보여주고 즉시 검사하였고, 학습한 후 일주일이 지난 후에 지연검사를 하였다. 그 결과 두 검사 모두에서 애니매이션과 나래이션을 제시한 조건이 다른 두 조건에 비해 효율적인 학습 수행 결과를 보였다. 이러한 결과는 아동에게 있어서 단일 매체(텍스트)로 정보를 제시하는 것보다는 다중매체(텍스트, 애니매이션)로 정보를 처리할 수 있도록 제시하는 것이 학습에 효과적임을 보요준다. 또한 이러한 결과는 기존의 이중보호이론과 작용기억이론을 지지해 준다.

  • PDF

Emotion Recognition based on Short Text using Semantic Orientation Analysis (의미 지향성 분석을 통한 단문 텍스트 기반 감정인지)

  • Kim, Hyun-Woo;Lee, Sung-Young;Chung, Tae-Choong;Yoon, Suk-Hwan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.375-377
    • /
    • 2012
  • 스마트폰과 같은 모바일 기기가 발전함에 따라 SNS, 모바일 메신저, SMS와 같은 단문 기반 메시지는 자신의 감정을 가장 잘 표현하는 매체이다. 그럼에도 불구하고 기존 연구는 주로 장문의 텍스트로부터 긍정, 부정 분류나 문서의 성향을 분석하는 것에 그치는 경우가 많다. 의미지향(Semantic Orientation)방법은 검색엔진을 통해 감정 키워드와 인지하고자 하는 단어의 동시 빈출 정도를 PMI로 계산한 것으로 WordNet과 같은 의미 사전이 존재하지 않는 한국어의 특성에서 적용 가능한 방법이다. 본 논문에서는 의미 지향성 및 다른 텍스트 기반 감정 분류 기술에 대해 비교하고 이들을 활용하여 한국어로 구성된 단문 텍스트에서 효율적인 감정 분류 기법을 제안하고자 한다.

A Suggestion of Designing Program for Learning Transfer from Block-Based Programming Language to Text-Based Programming Language (블록 기반 프로그래밍 언어에서 텍스트 기반 프로그래밍 언어로의 학습 전이를 위한 프로그램 설계 방안)

  • Yi, Soyul;Lee, Youngjun
    • Proceedings of The KACE
    • /
    • 2018.01a
    • /
    • pp.29-31
    • /
    • 2018
  • 프로그래밍 언어 교육에서 일반적으로 학습자들은 블록 기반 프로그래밍 언어에서 텍스트 기반 프로그래밍 언어 순서로 학습한다. 블록 기반 프로그래밍 언어나 텍스트 기반 프로그래밍 언어는 여타의 프로그래밍 언어들과 마찬가지로 프로그래밍의 기본 논리는 동일하나, 형태, 언어적 특성 및 사용 등에 대하여 다소 차이가 있다. 따라서 본 연구에서는 학습자들의 블록 기반 프로그래밍 언어에서 텍스트 기반 프로그래밍 언어로의 유연한 학습 전이를 돕기 위한 프로그램의 설계 방안을 선행 조직자의 제시, 학습 콘텐츠의 체계화, 단순하고 직관적인 화면 구성으로 제시하였다.

  • PDF

SNS Analysis Related to Presidential Election Using Text Mining (텍스트 마이닝을 활용한 대선 관련 SNS 분석)

  • Kwon, Young-Woo;Jung, Deok-Gil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.361-363
    • /
    • 2017
  • 최근 소셜 미디어의 이용률이 폭발적으로 증가함에 따라, 방대한 데이터가 네트워크로 쏟아져 나오고 있다. 이들 데이터는 기존의 정형 데이터뿐만 아니라 이미지, 동영상 등의 비정형 데이터가 있으며, 이들을 포괄하여 빅데이터라고 불린다. 이러한 빅데이터는 오피니언 마이닝, 테스트 마이닝 등의 기술적인 분석 기법과 빅데이터 요약 및 효과적인 표현방법에 대한 시각화 기법에 대하여 활발한 연구가 이루어지고 있다. 이 논문은 인기 있는 사회연결망 서비스인 Twitter의 트윗을 수집하고, 빅데이터 분석 기법인 텍스트 마이닝을 활용하여 2017년 대선에 대하여 분석하였다. 또한 분석된 자료의 효과적인 전달을 위해 워드 클라우드 진행하였다. 이 논문을 위하여 인기 있는 SNS인 Twitter의 최근 7일간 트윗(tweet)을 수집하고 분석하였다.

  • PDF

A theoretical study for effects about learning transfer between two more languages in programming education (프로그래밍 교육에서 2개 이상 프로그래밍 언어의 학습 전이 효과에 대한 이론적 고찰)

  • Yi, Soyul;Lee, Youngjun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.01a
    • /
    • pp.99-100
    • /
    • 2018
  • 컴퓨팅 사고력이 강조됨에 따라 우리 나라를 비롯한 세계 여러 나라에서는 프로그래밍 교육 등 컴퓨팅 관련 교육을 실시하고 있다. 일반적으로 프로그래밍 교육에서 초보 학습자에게는 블록 기반 프로그래밍 언어를 학습한 후 텍스트 기반 프로그래밍 언어를 학습하게 된다. 블록 기반 언어와 텍스트 기반 언어는 동일한 프로그래밍 논리를 함양하게 되지만, 다른 모든 언어들과 마찬가지로 언어 특성, 사용법, 형태 등 다소 차이가 있다. 따라서 본 논문에서는 블록 기반 프로그래밍 언어에서 텍스트 기반 프로그래밍 언어의 학습 전이의 효과에 대해 이론적 고찰을 실시하였으며, 그 결과 대부분의 연구에서 긍정적 전이 효과를 입증하였음을 확인하였다.

  • PDF

Text Corpus Construction for Language Model (대어휘 음성인식 언어모델링을 위한 텍스트 코퍼스 구축)

  • Kim Jeong-se;Yoon Aesun;Kwon Hyuk-Chul
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.155-158
    • /
    • 2002
  • 본 논문은 음성정보연구센터에서 추진하고 있는 대용량 텍스트 코퍼스 구축에 관하여 기술한다. 총 3 년 동안 약 3 억$\~$5 억 어절 수집을 목표로 하고 있으며, 주 목적은 대어휘 음성인식용 언어모델링을 위한 통계정보 추출용으로 활용할 예정이다. 1 차년도인 2002 년에 수집할 텍스트의 양은 약 6 천만 어절로 주요 일간지와 방송뉴스를 대상으로 하고 있다. 이 중 2 천만 어절은 띄어쓰기, 철자오류 수정 등을 수동으로 수행하고, 나머지 어절은 자동 검증 툴을 사용하여 오류를 수정하고자 한다. 본 논문에서는 공동 이용 가능한 텍스트 코퍼스의 구축 방안과 구축 시의 고려해야 할 사항들을 제시하고자 한다.

  • PDF

An Efficient Terminology Clustering Method Using Datamining Technique (데이타마이닝 기법을 이용한 효율적인 전문 용어 클러스터링)

  • 이정화;남상엽;문현정;우용태
    • Proceedings of the Korea Database Society Conference
    • /
    • 2000.11a
    • /
    • pp.210-215
    • /
    • 2000
  • 최근 대량의 텍스트 문서로부터 의미 있는 패턴이나 연관 규칙을 발견하기 위한 텍스트마이닝 기법에 대한 연구가 활발히 전개되고 있다. 하지만 비정형 텍스트 문서로부터 추출된 용어의 수는 불규칙적이고 일반적인 용어가 많이 추출되는 관계로 일반적인 연관 규칙 탐사 방법을 사용하게 되면 무의미한 연관 규칙이 대량으로 생성되어 지식 정보를 효과적으로 검색하기 어렵다. 본 논문에서는 연관 규칙 탐사 기법을 이용하여 대량의 문서로부터 유용한 지식 정보를 찾기 위하여 의미적으로 연관된 전문 용어들끼리 클러스터링 하기 위한 방법을 제안하였다. 학술 논문을 대상으로 전문 용어를 추출하여 관련된 용어들끼리 클러스터를 구성하는 실험을 통하여 제안된 방법의 효율성을 보였다.

  • PDF

Sentimental Analysis using the Phoneme-level Embedding Model (음소 단위 임베딩 모형을 이용한 감성 분석)

  • Hyun, Kyeongseok;Choi, Woosung;Jung, Soon-young;Chung, Jaehwa
    • Annual Conference of KIPS
    • /
    • 2019.10a
    • /
    • pp.1030-1032
    • /
    • 2019
  • 형태소 분석을 통하여 한국어 문장을 형태소 단위의 임베딩 및 학습 관련 연구가 되었으나 최근 비정형적인 텍스트 데이터의 증가에 따라 음소 단위의 임베딩을 통한 신경망 학습에 대한 요구가 높아지고 있다. 본 논문은 비정형적인 텍스트 감성 분석 성능 향상을 위해 음소 단위의 토큰을 생성하고 이를 CNN 모형을 기반으로 다차원 임베딩을 수행하고 감성분석을 위하여 양방향 순환신경망 모델을 사용하여 유튜브의 비정형 텍스트를 학습시켰다. 그 결과 텍스트의 긍정 부정 판별에 있어 90%의 정확도를 보였다.