• Title/Summary/Keyword: 텍스트 구성

Search Result 867, Processing Time 0.025 seconds

Musical Analysis on the Phrases of Chinese Poetry in Pansori Words (판소리 사설 중 한시 어구의 활용에 따른 음악적 분석)

  • Kim, Mi-Sook
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.4
    • /
    • pp.714-726
    • /
    • 2022
  • The purpose of this paper is to find out the way of utilizing phrases of Chinese poetry in Manjeongje and its musical characteristics. To this end, the roles of phrases contained in the Pansori words were classified into five patterns: landscape description, strengthening of pleasant emotions, strengthening of sad emotions, wordplay, and combination of various poems. As a result of analysis, phrases quoted in sad mood part consist of slow rhythm of Jinyangjo and Jungmori, and sad melody of Gyemyun-gil and Jingyemyun tone; thus, both the rhythm and melody are expressed in accordance with the mood of poems. On the other hand, the melody in the landscape description parts, and the rhythm in the joyful feeling and wordplay parts showed the characteristics of determining the mood. In addition, when applying the analysis results to the perspective of Pansori composition, it is necessary to discover novel texts, apply to editorials, and study musical implementation suitable for the original mood in order to create more artistic Pansori.

A Study on Building an Integrated Model of App Performance Analysis and App Review Sentiment Analysis (앱 이용실적과 앱 리뷰 감성분석의 통합적 모델 구축에 관한 연구)

  • Kim, Dongwook;Kim, Sungbum
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.1
    • /
    • pp.58-73
    • /
    • 2022
  • The purpose of this study is to construct a predictable estimation model that reflects the relationship between the variables of mobile app performance and to verify how app reviews affect app performance. In study 1 and 2, the relationship between app performance indicators was derived using correlation analysis and random forest regression estimation of machine learning, and app performance estimation modeling was performed. In study 3, sentiment scores for app reviews were by using sentiment analysis of text mining, and it was found that app review sentiment scores have an effect one lag ahead of the number of daily installations of apps when using multivariate time series analysis. By analyzing the dissatisfaction and needs raised by app performance indicators and reviews of apps, companies can improve their apps in a timely manner and derive the timing and direction of marketing promotions.

A Study on the Implementation of a Web-browser-based Global e-Navigation Service Discovery System for Decentralized Maritime Service Registries (탈중앙화 MSR 환경에서의 웹 브라우저 기반 글로벌 이내비게이션 서비스 검색 시스템 구현에 대한 연구)

  • Jinki, Jung;Young-Joong, Ahn
    • Journal of Navigation and Port Research
    • /
    • v.46 no.6
    • /
    • pp.501-508
    • /
    • 2022
  • The flow of global digitalization is leading to the emergence of a decentralized system environment based on blockchain or distributed ledger technology in the fields of economy, identity authentication, and logistics. Accordingly, a requirement that public services be searchable from several decentralized maritime service registries (MSRs) has been derived in terms of the discoverability of e-navigation services. This study describes a decentralized MSR environment composed of the MSR ledger and multiple local MSRs, and it has implemented a service search system that can search global e-navigation services in the environment through a web browser. This system is a decentralized application that dynamically generates service attributes, geometry information, and free text queries, and that provides users with relevant MSR and service access information from search results that are registered in the MSR ledger. In this study, we tested the established decentralized MSR environment and the system that performs service search within that environment, and we discussed its advantages and limitations.

Considerations for Applying Korean Natural Language Processing Technology in Records Management (기록관리 분야에서 한국어 자연어 처리 기술을 적용하기 위한 고려사항)

  • Haklae, Kim
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.22 no.4
    • /
    • pp.129-149
    • /
    • 2022
  • Records have temporal characteristics, including the past and present; linguistic characteristics not limited to a specific language; and various types categorized in a complex way. Processing records such as text, video, and audio in the life cycle of records' creation, preservation, and utilization entails exhaustive effort and cost. Primary natural language processing (NLP) technologies, such as machine translation, document summarization, named-entity recognition, and image recognition, can be widely applied to electronic records and analog digitization. In particular, Korean deep learning-based NLP technologies effectively recognize various record types and generate record management metadata. This paper provides an overview of Korean NLP technologies and discusses considerations for applying NLP technology in records management. The process of using NLP technologies, such as machine translation and optical character recognition for digital conversion of records, is introduced as an example implemented in the Python environment. In contrast, a plan to improve environmental factors and record digitization guidelines for applying NLP technology in the records management field is proposed for utilizing NLP technology.

Analysis of Descriptive Lectures Evaluation using Text Mining: Comparative analysis pre and post COVID-19

  • Lee, Sang-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.10
    • /
    • pp.211-222
    • /
    • 2022
  • The purpose of this study is to indicate the direction of the future university classes in the post-COVID era, comparing and analyzing lecture evaluation of pre and post COVID-19. To this end, 4 yeard data were used from 2018 to 2019 for pre COVID-19 and form 2020 to 2021 data for post COVID-19. The results were as follows. In the case of liberal arts, "assignments" was the word with the highest frequency and degree centrality(DC) regardless of pre and post-COVID-19 In the major, "understanding" appeared as the most important word. The result of the ego network analysis indicated that "video lecture" and "non-face-to-face classes" were difficult and "interaction" between the professor and the students was important. As a results, it is important to reduce the weight of assignments and increase interaction with students in liberal arts classes. In the case of majors, it is necessary to operate face-to-face classes rather than non-face-to-face classes, and to organize the contents of videos without difficulty.

Identification of User Preference Factor Using Review Information (리뷰 정보를 활용한 이용자의 선호요인 식별에 관한 연구)

  • Song, Sungjeon;Shim, Jiyoung
    • Journal of the Korean Society for information Management
    • /
    • v.39 no.3
    • /
    • pp.311-336
    • /
    • 2022
  • This study analyzed the contents of Goodreads review data, which is a social cataloging service with the participation of book users around the world, to identify the preference factors that affect book users' book recommendations in the library information service environment. To understand user preferences from a more detailed point of view, sub-datasets for each rating group, each book, and each user were constructed in the sample selection process. Stratified sampling was also performed based on the result of topic modeling of review text data to include various topics. As a result, a total of 90 preference factors belonging to 7 categories('Content', 'Character', 'Writing', 'Reading', 'Author', 'Story', 'Form') were identified. Also, the general preference factors revealed according to the ratings, as well as the patterns of preference factors revealed in books and users with clear likes and dislikes were identified. The results of this study are expected to contribute to more sophisticated recommendations in future recommendation systems by identifying specific aspects of user preference factors.

Syntactic and Semantic Disambiguation for Interpretation of Numerals in the Information Retrieval (정보 검색을 위한 숫자의 해석에 관한 구문적.의미적 판별 기법)

  • Moon, Yoo-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.8
    • /
    • pp.65-71
    • /
    • 2009
  • Natural language processing is necessary in order to efficiently perform filtering tremendous information produced in information retrieval of world wide web. This paper suggested an algorithm for meaning of numerals in the text. The algorithm for meaning of numerals utilized context-free grammars with the chart parsing technique, interpreted affixes connected with the numerals and was designed to disambiguate their meanings systematically supported by the n-gram based words. And the algorithm was designed to use POS (part-of-speech) taggers, to automatically recognize restriction conditions of trigram words, and to gradually disambiguate the meaning of the numerals. This research performed experiment for the suggested system of the numeral interpretation. The result showed that the frequency-proportional method recognized the numerals with 86.3% accuracy and the condition-proportional method with 82.8% accuracy.

A Study on Correlation Analysis of One-Person Housing Space Design Convergence Contents by Using Social Network Analysis (소셜 네트워크 분석 방법론을 활용한 1인 주거공간디자인 융합콘텐츠 상관관계 분석)

  • Park, Eun Soo;Kim, Ji Eun
    • Korea Science and Art Forum
    • /
    • v.34
    • /
    • pp.133-148
    • /
    • 2018
  • Korea's housing structure is predicted that one-person housing will be the most common type of housing in Korea. Therefore, this study intends to derive contents for designing a one-person housing space considering the life of a rapidly increasing one-person householder. For this purpose, this study objectively derives the social, economic and cultural influencing factors of one-person households through big data analysis, and analyzed the correlation between contents using social network analysis methodology. In this paper, 60 core contents related to one person housing space were derived by applying big data analysis methodology. And through social network analysis, the most influential contents were derived from the space editing and space composition categories. This means that the residential space is an important part of the design idea that can flexibly respond to changes in the user's life. Based on this study, future research will focus on the concept and design methodology of one-person housing space.

Jointly learning class coincidence classification for FAQ classification (FAQ 분류 성능 향상을 위한 클래스 일치 여부 결합 학습 모델)

  • Yang, Dongil;Ham, Jina;Lee, Kangwook;Lee, Jiyeon
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.12-17
    • /
    • 2019
  • FAQ(Frequently Asked Questions) 질의 응답 시스템은 자주 묻는 질문과 답변을 정의하고, 사용자 질의에 대해 정의된 답변 중 가장 알맞는 답변을 추론하여 제공하는 시스템이다. 정의된 대표 질문 및 대응하는 답변을 클래스(Class)라고 했을 때, FAQ 질의 응답 시스템은 분류(Classification) 문제라고 할 수 있다. 종래의 FAQ 분류는 동일 클래스 내 동의 문장(Paraphrase)에서 나타나는 공통적인 특징을 통해 분류 문제를 학습하였으나, 이는 비슷한 단어 구성을 가지면서 한 두 개의 단어에 의해 의미가 다른 문장의 차이를 구분하지 못하며, 특히 서로 다른 클래스에 속한 학습 데이터 간에 비슷한 의미를 가지는 문장이 존재할 때 클래스 분류에 오류가 발생하기 쉬운 문제점을 가지고 있다. 본 논문에서는 이 문제점을 해결하고자 서로 다른 클래스 내의 학습 데이터 문장들이 상이한 클래스임을 구분할 수 있도록 클래스 일치 여부(Class coincidence classification) 문제를 결합 학습(Jointly learning)하는 기법을 제안한다. 동일 클래스 내 학습 문장의 무작위 쌍(Pair)을 생성 및 학습하여 해당 쌍이 같은 클래스에 속한다는 것을 학습하게 하면서, 동시에 서로 다른 클래스 간 학습 문장의 무작위 쌍을 생성 및 학습하여 해당 쌍은 상이한 클래스임을 구분해 내는 능력을 함께 학습하도록 유도하였다. 실험을 위해서는 최근 발표되어 자연어 처리 분야에서 가장 좋은 성능을 보이고 있는 BERT 의 텍스트 분류 모델을 이용했으며, 제안한 기법을 적용한 모델과의 성능 비교를 위해 한국어 FAQ 데이터를 기반으로 실험을 진행했다. 실험 결과, 분류 문제만 단독으로 학습한 BERT 기본 모델보다 본 연구에서 제안한 클래스 일치 여부 결합 학습 모델이 유사한 문장들 간의 차이를 구분하며 유의미한 성능 향상을 보인다는 것을 확인할 수 있었다.

  • PDF

Developing a Korean sentiment lexicon through BPE (BPE를 활용한 한국어 감정사전 제작)

  • Park, Ho-Min;Cheon, Min-Ah;Nam-Goong, Young;Choi, Min-Seok;Yoon, Ho;Kim, Jae-Kyun;Kim, Jae-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.510-513
    • /
    • 2019
  • 감정분석은 텍스트에서 나타난 저자 혹은 발화자의 태도, 의견 등과 같은 주관적인 정보를 추출하는 기술이며, 여론 분석, 시장 동향 분석 등 다양한 분야에 두루 사용된다. 감정분석 방법은 사전 기반 방법, 기계학습 기반 방법 등이 있다. 본 논문은 사전 기반 감정분석에 필요한 한국어 감정사전 자동 구축 방법을 제안한다. 본 논문은 영어 감정사전으로부터 한국어 감정사전을 자동으로 구축하는 방법이며, 크게 세 단계로 구성된다. 첫 번째는 한영 병렬 말뭉치를 이용한 한영 이중언어 사전을 구축하는 단계이고, 두 번째는 한영 이중언어 사전을 통한 한영 이중언어 그래프를 생성하는 단계이며, 세 번째는 영어 단어의 감정값을 한국어 BPE의 감정값으로 전파하는 단계이다. 본 논문에서는 제안된 방법의 유효성을 보이기 위해 사전 기반 한국어 감정분석 시스템을 구축하여 평가하였으며, 그 결과 제안된 방법이 합리적인 방법임을 확인할 수 있었으며 향후 연구를 통해 개선한다면 질 좋은 한국어 감정사전을 효과적인 방법으로 구축할 수 있을 것이다.

  • PDF