• Title/Summary/Keyword: 터빈 케이싱

Search Result 30, Processing Time 0.022 seconds

Analysis of Joints Using Metal Seals in Liquid Rocket Engine Turbopump (액체로켓엔진 터보펌프의 금속 실 체결부 해석)

  • Yoon, Suk-Hwan;Jeon, Seong Min;Kim, Jinhan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.6
    • /
    • pp.105-112
    • /
    • 2013
  • Turbopump is typically an assembly of rotors and casings, and there are a number of joints between them. Every joint should be leak-proof, so there is always a seal to accomplish the goal. Among various seals, metal seals are advantageous in that they are robust at high pressure, and at wide range of temperature. In this study, flange joints using conical seal made of stainless steel, solid flat metal seal made of copper and metal C seal made of Inconel 718 were structurally designed and analyzed, considering both initial tightening and operating conditions.

A Numerical Analysis of Tip Flow Characteristics in An 1.5 Stage Axial Turbine (1.5단 축류 터빈의 익단 유동 특성에 관한 수치해석)

  • Hwang, Dong-Ha;Jung, Yo-Han;Baek, Je-Hyun;Rhee, Dong-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.157-160
    • /
    • 2008
  • Tip clearance is a critical point in turbine to reduce friction between blade and casing. To estimate the direct effectiveness of the tip clearance, numerically analyzed are flow passing through rotors with and without tip clearance. The Results by CFX tells that rotors with tip clearance have vortex structure which makes larger loss in turbine, and shows lower total-to-total efficiency than that without tip clearance.

  • PDF

Calculation of Maximum Allowabel Temperature Difference for Life Design of Valve Casings for Steam Turbines of Fossil Power Plants (화력발전용 증기터빈 밸브 케이싱의 수명 설계를 위한 최대허용온도차 계산)

  • Ha, Joon-Wook;Kim, Tae-Woan;Lee, Boo-Youn
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.46-52
    • /
    • 1999
  • Large valves for steam turbines of fossil power plants are exposed to a severe mechanical and thermal loading resulting from steam with high pressure and high temperature. Valve casings are designed to withstand such a loading. During the operation of a plant, temperatures at inner and outer surface of the casings are measured and steam flow is controlled so that the measured difference is lower than the maximum allowable value determined in the design stage. In this paper, a method is presented to calculate the maximum allowable temperature difference at the inner and outer surface of valve casings for steam turbines of fossil power plants. The finite element method is used to analyze distribution of temperature and stresses of a casing under the operating condition. Low cycle fatigue and creep rupture are taken into consideration to determine the maximum allowable temperature difference. The method can be usefully applied in the design stage of the large valves for the steam turbines, contributing to safe and reliable operation of the fossil power plants.

  • PDF

Investigation of the Thermo-mechanical Crack Initiation of the Gas Turbine Casing Using Finite Element Analysis (유한요소해석을 이용한 가스터빈 케이싱 열피로 균열발생 해석)

  • Kang, M.S.;Yun, W.N.;Kim, J.S.
    • Journal of Power System Engineering
    • /
    • v.13 no.5
    • /
    • pp.52-58
    • /
    • 2009
  • A gas turbine consists of an upstream compressor and a downstream turbine with a combustion chamber, and also the compressor and the turbine are generally coupled using a single shaft. Many casing bolts are used to assemble two horizontally separated casings, the gas turbine casing and the compressor casing, in both of axial and vertical directions. Because drilled holes for casing bolts in vertical direction are often too close to drilled holes for casing bolts in axial direction, one can observe cracks in the area frequently during operations of a gas turbine. In this study of the root cause analysis for the cracking initiating from the drilled holes of the casings of a gas turbine, the finite element analysis(FEA) was applied to evaluate the thermal and mechanical characteristics of the casings. By applying the field operation data recorded from combined cycle power plants for FEA, thermal and thermo-mechanical characteristics of a gas turbine are analyzed. The crack is initiated at the geometrical weak point, but it is found that the maximum stress is relieved when the same type of cracks is introduced on purpose during FEA. So, it is verified that the local fracture could be delayed by machining the same type of defects near the hole for casing flange bolts of the gas turbine, where the crack is initiated.

  • PDF

Vibration Reduction of a LP Steam Turbine having Support Subsidence (지반침하가 있는 저압 증기터빈의 진동저감)

  • Shin, Bum-Sik;Choi, Yeon-Sun;Bong, Suk-Kun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.1
    • /
    • pp.74-80
    • /
    • 2012
  • The vibration of a LP turbine case may cause the failure of power generation and reduce the life of its facility. In this study we carried out on-site measurements of a LP turbine in order to find the cause of the vibration and conducted experimental and numerical modal analysis of the turbine case with its support frame. The measurement and the modal analysis show that the natural frequency of the turbine becomes close to 60 Hz due to the subsidence of the support. The elimination of the subsidence by shimming between the turbine and the support frame gave rise to the reduction of the vibration of the LP turbine case.

Vibration Reduction of a LP Turbine Casing due to Subsidence (지반침하 기인 저압 증기터빈 케이스 진동 저감)

  • Shin, Bum-Sik;Choi, Yeon-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.384-389
    • /
    • 2011
  • The vibration of a LP turbine casing may cause the problems of power generation and the life of its facility. In this study, we carried out on-site measurements of a LP Turbine in order to find the cause of the vibration and conducted experimental and numerical modal analysis of the turbine with its support frame. The measurement and the modal analysis show that the natural frequency of the turbine becomes close to 60 Hz due to the subsidence of the support. The elimination of the subsidence by shimming between the turbine and the support frame gave rise to the reduction of the vibration of the LP turbine case.

  • PDF

Aerodynamic Rig Test of Radial Turbine for APU (APU용 구심터빈의 공력리그시험)

  • Kang, Jeong-Seek;Lim, Byeung-Jun;Ahn, Iee-Ki
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • An aerodynamic rig test of a radial turbine for an auxiliary power unit (APU) was performed at a high-temperature turbine test facility at the Korea Aerospace Research Institute. The pressure ratio, Mach number, and flow coefficient in the rig test are the same as those under normal engine operation conditions. The design pressure ratio is 3.096, design test speed is 34909 rpm, and turbine inlet temperature is $160^{\circ}C$. The turbine has airfoil-type nozzles, and the diameter of the turbine wheel is 175.74 mm. The turbine map is experimentally measured, and the detailed flow at the turbine inlet is measured. The pressure distribution in the nozzle at both the hub and the shroud sides and the pressure distribution along the shroud casing of the turbine wheel were measured, and this confirmed that the expansion process in the turbine wheel is acceptable.