• Title/Summary/Keyword: 터빈 설계

Search Result 806, Processing Time 0.028 seconds

CFD Study on Aerodynamic Power Output of 6 MW Offshore Wind Farm According to the Wind Turbine Separation Distance (CFD를 활용한 6 MW 해상풍력발전단지의 풍력터빈 이격거리에 따른 공기역학적 출력 변화연구)

  • Choi, Nak-Joon;Nam, Sang-Hyun;Jeong, Jong-Hyun;Kim, Kyung-Chun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.1063-1069
    • /
    • 2011
  • This paper presents aerodynamic power outputs of wind turbine of 6 MW wind farm composed of 3 sets of 2 MW wind turbine according to the separation distance by using CFD. Layout design including offshore wind farm and onshore wind farm is key factor for the initial investment cost, annual energy production and maintenance cost. For each wind turbine rotor, not actuator disc model with momentum source but full 3-dimensional model is used for CFD and it has a great technical meaning. The results of this study can be applied to the offshore wind farm layout design effectively.

Optimal Design of Flow Measurement System Using Turbine Flowmeter (터빈유량계를 이용한 유량 측정 시스템의 최적 설계)

  • Kim, Hong-Tark;Kim, Boo-Il
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.1
    • /
    • pp.77-84
    • /
    • 2018
  • The turbine flowmeter is selected for high precision and reproducibility at the time of flow rate measurement but causes various uncertainty factors of measurement in the difference between the standard environmental condition at calibration and the environmental condition at the site. Also, a reliable interpolation method is required for use in sections other than calibrated measurement values. Therefore, in this paper, in order to improve the reliability of the flow rate measurement, we designed and manufactured a device that accurately measures the output signal of the turbine flowmeter, interpolates the value of the calibrated result value, and corrects the temperature change in real time We confirmed the reliability of the measurement at the site to carry out the performance verification.

Meanline analysis method for performance analysis of a multi-stage axial turbine in choking region (다단 축류 터빈에서의 초킹 영역 탈설계 성능 해석을 위한 평균반경 해석법)

  • Kim, Sangjo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.881-888
    • /
    • 2017
  • In general, the choking phenomenon occurs by flow acceleration for a turbine at high pressure ratio condition. In choking condition, total pressure ratio increases without mass flow rate variation. It is hard to predict choking characteristics by using conventional meanline analysis which used mass flow inlet boundary condition. In the present study, the algorithm for predicting choking point is developed to solve the problem. Moreover, performance estimation algorithm after choking is presented by reflecting the flow behaviour of flow expansion at choked nozzle or rotor. The analysis results are compared with 3D CFD analysis and experimental data to validate present method.

  • PDF

Meanline Analysis Method for Performance Analysis of a Multi-stage Axial Turbine in Choking Region (다단 축류 터빈에서의 초킹 영역 탈설계 성능 해석을 위한 평균반경 해석법)

  • Kim, Sangjo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.2
    • /
    • pp.20-28
    • /
    • 2018
  • In general, the choking phenomenon occurs due to the flow acceleration of a turbine under high pressure-ratio. During choking, the total pressure ratio increases without any variation in the mass flow rate. It is difficult to predict choking characteristics by using conventional meanline analysis, which utilizes mass flow inlet boundary condition. In this study, an algorithm for predicting the choking point is developed to solve this problem. In addition, a performance estimation algorithm is presented to estimate the performance after choking, based on the flow behavior of flow expansion at the choked nozzle or rotor. The analysis results are compared with 3D CFD analysis and experimental data to validate this method.

Techniques of Airbreathing Propulsion System Integration Using Small Gas Turbine Engine for Subsonic Cruise Missiles (소형 가스터빈 엔진의 유도탄 체계통합 기술)

  • Jang, Jongyoun;Kim, Joon;Jung, Jaewon;Lim, Jinshik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.3
    • /
    • pp.81-88
    • /
    • 2021
  • An airbreathing propulsion system of a subsonic cruise missile is mainly composed of a small gas turbine engine, air intake and vehicle's fuel tank. The propulsion system integration work started from engine acceptance test is finally closed by ground functional test of the missile's propulsion section, after some modifications of engine's sub-components, development of engine-related onboard systems, interface analyses, and tests. The whole process and stepwise technologies of this system integration work are described herein.

Seismic Safety Assessment of the Turbine-Generator Foundation using Probabilistic Structural Reliability Analysis (확률론적 구조신뢰성해석을 이용한 터빈발전기 기초의 지진 안전성 평가)

  • Joe, Yang-Hee;Kim, Jae-Suk;Han, Sung-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.33-44
    • /
    • 2008
  • Most of the civil structure - bridges, offshore structures, plant, etc. - have been designed by the classical approaches which deal with all the design parameters as deterministic variables. However, some more advanced techniques are required to evaluate the inherent randomness and uncertainty of each design variable. In this research, a seismic safety assessment algorithm based on the structural reliability analysis has been formulated and computerized for more reasonable seismic design of turbine-generator foundations. The formulation takes the design parameters of the system and loading properties as random variables. Using the proposed method, various kinds of parametric studies have been performed and probabilistic characteristics of the resulted structural responses have been evaluated. Afterwards, the probabilistic safety of the system has been quantitatively evaluated and finally presented as the reliability indexes and failure probabilities. The proposed procedure is expected to be used as a fundamental tool to improve the existing design techniques of turbine-generator foundations.

Optimal Design for the Rotor Overlap of a Supersonic Impulse Turbine to Improve the Performance (초음속 충동형 터빈 성능개선을 위한 동익 오버랩 최적설계)

  • Cho, Jongjae;Shin, Bong Gun;Kim, Kuisoon;Jeong, Eunhwan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.1
    • /
    • pp.33-41
    • /
    • 2014
  • In a supersonic turbine, A rotor overlap technique reduced the chance of chocking in the rotor passage, and made the design pressure ratio satisfied. However, the technique also made additional losses, like a pumping loss, expansion loss, etc. Therefore, an approximate optimization technique was appled to find the optimal shape of overlap which maximizes the improvement of the turbine performance. The design variables were shape factors of a rotor overlap. An optimal design for rotor overlap reduces leakage mass flow rate at tip clearance by about 50% and increases about 4% of total-static efficiency compared with the base model. It was found that the most effective design variable is the tip overlap and that the hub overlap size is the lowest.