• Title/Summary/Keyword: 터빈 부하

Search Result 278, Processing Time 0.026 seconds

Determination of Surge Tank Scale for Dam Safety Management (댐 안전관리를 위한 조압수조의 규모 결정)

  • Lee, Ho Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.2
    • /
    • pp.164-174
    • /
    • 2007
  • Phenomena of hydraulic transient such as water hammer should be analyzed to design the pipeline systems effectively in dam. Surge tanks generally are used to reduce change in pressure caused by hydraulic transient from load changes on the turbines. In this study, the appropriate scale of surge tank with chamber is investigated for dam safety management. The variation of water level in the surge tank are computed using governing equation. Using the Thoma-Jaeger's stability condition, static and dynamic stability are investigate for the cases of flood water level, normal high water level, rated water level and low water level. Finally appropriate diameters of shaft and chamber are determined in the surge tank with chamber.

Structural Analysis and Measurement of Turbopump Casings (터보펌프 케이징의 구조해석 및 측정)

  • Yun, Seok-Hwan;Jeon, Seong-Min;Kim, Jin-Han
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.174-180
    • /
    • 2006
  • The present paper describes transient thermal and mechanical analyses of a lox/kerosene type turbopump in a LRE(Liquid Rocket Engine). Turbopumps are used to pressurize propellants to achieve higher specific impulse of LRE. The turbopump under development has been designed and verified by structural analyses using finite element methods. Some parts of the turbopump operate under cryogenic environments, while the others work under ambient and high temperature environments. Therefore, numerical analysis at a turbopump system level is essential. In this study, casing assemblies of lox pump and fuel pump were analyzed to determine strength test and air-tightness test conditions. Also, some operational stress and strains of fuel pump casings were measured and analyzed. Based on these results, stress concentration of fuel pump casings during the operation could be successfully predicted.

  • PDF

Design of Tower Damper Gain Scheduling Algorithm for Wind Turbine Tower Load Reduction (풍력터빈 타워 하중 저감을 위한 타워 댐퍼 게인 스케줄링 알고리즘 설계)

  • Kim, Cheol-Jim;Kim, Kwan-Su;Paek, In-Su
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.2
    • /
    • pp.1-13
    • /
    • 2018
  • This paper deals with the NREL (National Renewable Energy Laboratory) 5-MW reference wind turbine. The controller which include MPPT (Maximum power point tracking) control algorithm and tower load reduction control algorithm was designed by MATLAB Simulink. This paper propose a tower damper algorithm to improve the existing tower damper algorithm. To improve the existing tower damper algorithm, proposed tower damper algorithm were applied the thrust sensitivity scheduling and PI control method. The thrust sensitivity scheduling was calculated by thrust force formula which include thrust coefficient table. Power and Tower root moment DEL (Damage Equivalent Load) was set as a performance index to verify the load reduction algorithm. The simulation were performed 600 seconds under the wind conditions of the NTM (Normal Turbulence Model), TI (Turbulence Intensity)16% and 12~25m/s average wind speed. The effect of the proposed tower damper algorithm is confirmed through PSD (Power Spectral Density). The proposed tower damper algorithm reduces the fore-aft moment DEL of the tower up to 6% than the existing tower damper algorithm.

EGR Effects on Exhaust Gas of Heavy-Duty Turbo Charge Engine with Low Pressure Route System (저압방식을 적용한 대형과급기관의 배기가스에 관한 EGR효과)

  • 오용석
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.1
    • /
    • pp.58-62
    • /
    • 2002
  • The efforts of EGR on performance and emissions were investigated in this study. The engine used for the tests was a six-cylinder, 11 liter, and turbo-charged, heavy-duty diesel engine with a low pressure route ECR system. The volume of recirculated gas was controlled by a manually operated valve which was installed between the turbine outlet and compressor inlet. The experiments were performed at various engine speeds and loads while the ECR rates were set at 4% and 8%. Exhaust emissions with EGR system were compared with the baseline emissions.

  • PDF

Modeling of Hanlim's gas turbine generator & qualitative analysis of PSS operation (한림가스터빈 발전기/제어계의 모델링 및 PSS 동작의 정성적 분석)

  • Choi, K.S.;Moon, Y.H.;Kim, D.J.;Choo, J.B.;Lyu, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.95-98
    • /
    • 1996
  • Response speed of generator/control system kas increased with the aid of the development of power electronics. Even though it is desirable to enhance response speed for the control system(AVR/Gov) of generator itself, in case a certain generator/control system with high response excitation system is connected with bulk power system, terminal voltage and active power of some generators can oscillate with adjoining generators or near area when even a little of disturbance take place. PSS(Power System Stabilizer) is used to damp rotor swing by adding the supplementary signal in phase with speed. As the stable AVR response is very important before PSS is installed, modeling and analysis of generator/control system was performed. Next we have analysed PSS response of Hanlim's gas turbine by transmission line open/close test.

  • PDF

Heat/Mass Transfer Characteristics in A Rotating Duct with $180^{\circ}$ Turn ($180^{\circ}$ 곡관부를 가지는 회전 덕트에서의 열/물질전달 특성)

  • Won, Chung-Ho;Lee, Sei-Young;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.405-413
    • /
    • 2001
  • The present study investigates convective heat/mass transfer and flow characteristics inside a rotating two-pass rectangular duct. A naphthalene sublimation technique is employed to determine the detailed local heat transfer coefficients using the heat and mass transfer analogy. The objective of this study is to determine the effects of turning geometry with rotation for 0.0$\leq$Ro$\leq$0.24. The results reveal that the sharp-turn corner has the larger pressure drop and lower heat transfer in the post-turn region than those of the round-turn corner. The strong secondary flow enhances heat transfer for the round-turn corner. Coriolis force induced by the rotation pushes the high momentum core flow toward the trailing wall in the first passage with radially outward flow and toward the leading wall in the second passage with radially inward flow. Consequently, the high heat transfer rates are generated on the trailing surface and the leading surface in the first and second passage, respectively. However, the strong secondary flow due to the turning dominates the flow pattern in the second passage, thus the heat transfer differences between the leading and trailing surfaces are small with the rotation.

Optimal Sizing of Distributed Power Generation System based on Renewable Energy Considering Battery Charging Method (배터리 충전방식을 고려한 신재생에너지 기반 분산발전시스템의 용량선정)

  • Kim, Hye Rim;Kim, Tong Seop
    • Plant Journal
    • /
    • v.17 no.3
    • /
    • pp.34-36
    • /
    • 2021
  • The interest in renewable energy-based distributed power generation systems is increasing due to the recognitions of the breakthrough of existing centralized power generation, energy conversion, and environmental problems. In this study, the optimal capacity was selected by simulating a distributed power generation system based on PV and WT using lead acid batteries as the energy storage system. CHP was adopted as the existing power source, and the optimal capacity of the system was derived through MOGA according to the operating modes(full load/part load) of the existing power source. In addition, it was confirmed that the battery life differs when the battery charging method is changed at the same battery capacity. Therefore, for economical and stable power supply and demand, the capacity selection of the distributed generation system considering the battery charging method should be performed.

Microstructures and Mechanical Properties of GTD 111DS Welds by $CO_2$ Laser Welding ($CO_2$ 레이저를 이용한 GTD111DS 초합금 용접부의 미세조직과 기계적 성질)

  • Lee, Tack-Woon;Yang, Sung-Ho;Kim, Sang-Hun
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.108-108
    • /
    • 2009
  • Precipitation hardening nickel base alloys strengthened by intermetallic compounds are extensively used to manufacture on the components of the hot section of gas turbine engines. To ensure structural stability and maintenance of strength properties for a long time, nickel alloys are normally subjected to complex alloying with elements to form ${\gamma}'$(gamma prime). Such alloys have a limited weldability, are normally welded in high temperature. However, laser welding have a merit that applies in room temperature as easy control of welding parameter and heat input. In this study, $CO_2$ laser welding is applied on STS304 plate with good ductility and precipitation hardening nickel base alloy (GTD111DS) used blade material. Also, several welding parameters are applied on powder, power and travel speed. There are no cracks in Rene 80 and IN 625 powder when STS304 plate is used. But IN 625 powder has no cracks and Rene 80 have some cracks in welds with GTD111DS substrate. Adjusting of welding parameter is tried to apply Rene 80 having a good strength compare to IN 625. In the result of adjusted welding parameter, optimized welding parameters are set with low power, low feed rate and high welding speed. Tensile strength of GTD111DS substrate with Rene 80 powder is same and over than the one of base metal in room temp and high temp($760^{\circ}C$).

  • PDF

Comparison of LCOE of the Southwest Offshore Wind Farm According to Types and Construction Methods of Supporting Structures (해상풍력 지지구조물 형식 및 시공 방법에 따른 서남해 해상풍력실증단지의 균등화발전비용 비교)

  • SeoHo Yoon;Sun Bin Kim;Gil Lim Yoon;Jin-Hak Yi
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.3
    • /
    • pp.57-66
    • /
    • 2023
  • In order to understand the economic feasibility of an offshore wind farm, this paper analyzed the differences in LCOE (levelized cost of energy) according to the support type and construction method of the substructure in terms of LCOE and sensitivity analysis was conducted according to the main components of LCOE. As for the site to be studied, the Southwest Offshore Wind Farm was selected, and the capital expenditures were calculated according to the size of the offshore wind farm and the installation unit. As a result of the sensitivity analysis, major components showed high sensitivity to availability, turbine related cost, weighted average cost of capital and balance of system related cost. Moreover, the post-piling jacket method, which was representatively applied to the substructure of the offshore wind farm in Korea, was selected as a basic plan to calculate the capital expenditures, and then the capital expenditures of the pre-piling jacket method and the tripod method were calculated and compared. As a result of analyzing the LCOE, it was confirmed that the pre-piling jacket method of the supporting structure lowers the LCOE and improves economic feasibility as the installation number of turbines increases.

A thermal-flow analysis of deaerator floor of power plant for reducing the radiative heat transfer effect (발전소 Deaerator floor의 복사효과 저감을 위한 열유동 해석)

  • Kim, Tae-Kwon;Ha, Ji-Soo;Choi, Yong-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.476-481
    • /
    • 2016
  • Steam power generation is used to produce electricity through a generator that is connected to a steam turbine. As a result, the surface temperature of the deaerator is $70^{\circ}C$during the summer season, the surface temperature of the storage tank is $67^{\circ}C$, and the air temperature is $50^{\circ}C$. This environment is inappropriate for workers and instruments. Workers adjacent to the deaerator and storage tank in particular feel higher temperatures because of the radiative heat transfer effect. Therefore, we optimized the cooling conditions by computational analysis. Case 1 is the current shape of the power plant, Case 2 has additional insulation, and Case 3 has a radiation shield. Flow is caused by a temperature difference between the heat sources in the wall, and hot air is trapped in the right upper end. Based on the temperature contours and the maximum temperature of the surfaces, Case 2 was found to be the most efficient for reducing radiative heat transfer effects.