• Title/Summary/Keyword: 터빈 단

Search Result 160, Processing Time 0.026 seconds

Measurement of Unsteady Total Pressure downstream of an 1-Stage Axial Turbine (1단 축류터빈 로터의 후류에서 비정상 전압력 측정에 관한 연구)

  • Kang, Jeong-Seek;Cha, Bong-Jun;Yang, Soo-Seok;Lee, Dae-Sung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.318-323
    • /
    • 2005
  • To evaluate the accurate performance of turbomachinery, it is important to measure the unsteady flow phenomena downstream of the rotor blade. This paper presents the development of the fast-response total pressure probe for the measurement of the total pressure field at the exit of rotor and the result of measurement in a 1-stage axial turbine. The fast-response total pressure probe was fabricated by installing a fast-response pressure sensor near the head of a Kiel probe. And it measured the phase-lock averaged total pressure downstream of an 1-stage axial turbine. The developed probe successfully measured the accurate total pressure distribution at rotor exit and made possible to evaluate the loss distribution and the accurate performance of turbomachinery.

  • PDF

Natural Vibration and Failure Trouble in LP Stage Blades of Nuclear Power Turbine (원전 터빈 저압단 블레이드의 절손사고와 진동특성)

  • Koo, Jae-Raeyang;Lee, Woo-Kwang;Cho, Cheul-Whan;Kim, Yeon-Whan;Kang, Byeong-Yeon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1040-1043
    • /
    • 2006
  • Every mechanical system has a series of natural frequencies at which it will vibrate and to which it will respond if an external stimulus or excitation at this frequency is applied. Vibration is not of itself dangerous, and is always anticipated in an operating unit. However, if the frequency of operation is coincidental with one of the natural frequency of the blade system or the blade has a natural frequency near coincide with the exciting stimulus, then the amplitude of vibration of the blade may increase to the destructive damage can result. In this paper We investigated damage of blade when turbine operated.

  • PDF

A Review of Development for DHI's Industrial Gas Turbine Combustor (2) (두산중공업 발전용 가스터빈 연소기 개발 현황 (2))

  • Lee, Donghun;Lee, Sangeon;Chon, Muhwan;Nam, Samsik;Lee, Kwangyeol
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.269-269
    • /
    • 2015
  • 두산중공업이 국책과제로 개발 중인 한국형 대형 가스터빈의 연소기 개발현황 및 결과에 대해 기술하였다. 압력손실 5%, 연소효율 99.9%, 15ppm NOx 배출 성능을 가지는 14개의 캔형 연소기로 구성되었으며, 40% turn down ratio 운전, WI ${\pm}7%$의 fuel flexibility 성능 및 dual fuel 적용 가능한 운전 성능 목표를 가진다. 이를 위해 Dry Low NOx 형 연소기를 개발, 단일 노즐 연소시험을 수행 중이며, 2016년 상반기 중 상압연소리그시험을 거쳐 그 성능을 검증하고자 한다.

  • PDF

Performance Analysis of CHP(Combined Heat and Power) for Various Ambient Conditions (외기조건변화에 따른 CHP 성능 해석)

  • Jeon, Yong-Han;Kim, Jong-Yoon;Kim, Nam-Jin;Lim, Kyung-Bum;Seo, Young-Ho;Kim, Ki-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.8
    • /
    • pp.3353-3359
    • /
    • 2011
  • The co-generation system consisted of gas a turbine, a steam turbine, heat recovery steam generator and a heat exchangers for district heating was investigated in the present study. A back-pressure steam turbine (non-condensing type) was used. A partial load analysis according to the outdoor temperature in winter was conducted and optimal thermal load and power conditions was examined using the commercial computing software Thermoflex. As a result, under a constant thermal load, the power outputs of gas turbine and overall system increased as an outdoor temperature decreased. On the other hand, the reduction in exhaust gas temperature led to the decrease in output of steam turbine. Considering the portion of gas turbine in overall system in terms of the power output, it can be known that the tendency in power output of overall system was similar to that of the gas turbine.

Rotor-Blade Shape Design and Power-Performance Analysis for Horizontal-Axis Tidal Turbine Using CFD (수평축 조류발전용 로터 블레이드 형상설계 및 CFD에 의한 출력성능해석)

  • Jung, Ji Hyun;Kim, Bum Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.8
    • /
    • pp.661-668
    • /
    • 2015
  • We present a design methodology for horizontal-axis tidal turbine blades based on blade element momentum theory, which has been used for aerodynamic design and power-performance analysis in the wind-energy industry. We design a 2-blade-type 1 MW HATT blade, which consists of a single airfoil (S814), and we present the detailed design parameters in this paper. Tidal turbine blades can experience cavitation problems at the blade-tip region, and this should be seriously considered during the early design stage. We perform computational fluid dynamics (CFD) simulations considering the cavitation model to predict the power performance and to investigate the flow characteristics of the blade. The maximum power coefficient is shown to be about 47 under the condition where TSR = 7, and we observed cavitation on the suction and pressure sides of the blade.

Study for Fracture in the Last Stage Blade of a Low Pressure Turbine (화력발전용 저압터빈 최종 단 블레이드에 대한 파손 연구)

  • Lee, Gil Jae;Kim, Jae Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.4
    • /
    • pp.423-428
    • /
    • 2016
  • The last stage blades of a low pressure (LP) turbine get frequently fractured because of stress corrosion cracking. This is because they operate in a severe corrosive environment that is caused by the impurities dissolved in condensed steam and high stress due to high speed rotation. To improve the reliability of the blades under severe conditions, 12% Cr martensitic stainless steel, having excellent corrosion resistance and higher strength, is widely used as the blade material. This paper shows the result of root cause analysis on a blade which got fractured suddenly during normal operation. Testing of mechanical properties and microstructure examination were performed on the fractured blade and on a blade in sound condition. The results of testing of mechanical properties of the fractured blade showed that the hardness were higher but impact energy were lower, and were not meeting the criteria as per the material certificate specification. This result showed that the fractured blade became embrittled. The branch-type crack was found to have propagated through the grain boundary and components of chloride and sulfur were detected on the fractured surface. Based on these results, the root cause of fracture was confirmed to be stress corrosion cracking.

Delamination Evaluation of Thermal Barrier Coating on Turbine Blade owing to Isothermal Degradation Using Ultrasonic C-scan Image (초음파 C-scan을 이용한 터빈 블레이드 열차폐코팅의 등온열화에 의한 박리 평가 기법)

  • Lee, Ho-Girl;Kim, Hak-Joon;Song, Sung-Jin;Seok, Chang-Sung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.5
    • /
    • pp.353-362
    • /
    • 2016
  • Thermal barrier coating (TBC) is an essential element consisting of a super-alloy base and ceramic coating designed to achieve long operational time under a high temperature and pressure environment. However, the top coat of TBC can be delaminated at certain temperatures with long operation time. As the delamination of TBC is directly related to the blade damage, the coupling status of the TBC should be assured for reliable operation. Conventional studies of nondestructive evaluation have been made for detecting generation of thermally grown oxide (TGO) or qualitatively evaluating delamination in TBC. In this study, the ultrasonic C-scan method was developed to obtain the damage map inside TBC by estimating the delamination in a quantitative way. All specimens were isothermally degraded at $1,100^{\circ}C$ with different time, having different partial delamination area. To detect partial delamination in TBC, the C-scan was performed by a single transducer using pulse-echo method with normal incidence. Partial delamination coefficients of 1 mm to 6 mm were derived by the proportion of the surface reflection signal and flaw signal which were theoretical signals using Rogers-Van Buren and Kim's equations. Using the partial delamination coefficients, the partial delamination maps were obtained. Regardless of the partial delamination coefficient, partial delamination area was increased when degradation time was increased in TBC. In addition, a decrease in partial delamination area in each TBC specimen was observed when the partial delamination coefficient was increased. From the portion of the partial delamination maps, the criterion for delamination was derived.

Performance Assessment of MDO Optimized 1-Stage Axial Compressor (MDO 최적화 설계기법을 이용해 설계된 1단 축류형 압축기의 성능평가)

  • Kang, Young-Seok;Park, Tae-Choon;Yang, Soo-Seok;Lee, Sae-Il;Lee, Dong-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.397-400
    • /
    • 2011
  • MDO Optimization for a low pressure axial compressor rotor has been carried out to improve aerodynamic performance and structural stability. Global optimized solution was obtained from an artificial neural network model with genetic algorithm. Optimized rotor model has a high blade loading near hub and near zero incidence flow angle near tip region to reduce the incidence loss and flow separation at trailing edge region. Also the rotor shape is converged to a trapezoid shape to reduce the maximum stress occurred at the root of the blade. Numerical simulation results show that rotor has 87.6% rotor efficiency and safety factor over than 3.

  • PDF

Analysis of wind farm power prediction sensitivity for wind speed error using LSTM deep learning model (LSTM 딥러닝 신경망 모델을 이용한 풍력발전단지 풍속 오차에 따른 출력 예측 민감도 분석)

  • Minsang Kang;Eunkuk Son;Jinjae Lee;Seungjin Kang
    • Journal of Wind Energy
    • /
    • v.15 no.2
    • /
    • pp.10-22
    • /
    • 2024
  • This research is a comprehensive analysis of wind power prediction sensitivity using a Long Short-Term Memory (LSTM) deep learning neural network model, accounting for the inherent uncertainties in wind speed estimation. Utilizing a year's worth of operational data from an operational wind farm, the study forecasts the power output of both individual wind turbines and the farm collectively. Predictions were made daily at intervals of 10 minutes and 1 hour over a span of three months. The model's forecast accuracy was evaluated by comparing the root mean square error (RMSE), normalized RMSE (NRMSE), and correlation coefficients with actual power output data. Moreover, the research investigated how inaccuracies in wind speed inputs affect the power prediction sensitivity of the model. By simulating wind speed errors within a normal distribution range of 1% to 15%, the study analyzed their influence on the accuracy of power predictions. This investigation provided insights into the required wind speed prediction error rate to achieve an 8% power prediction error threshold, meeting the incentive standards for forecasting systems in renewable energy generation.