• Title/Summary/Keyword: 터보펌프 (turbopump)

Search Result 265, Processing Time 0.022 seconds

Structural Effects of Geometric Parameters on Liquid Rocket Turbopump Turbine Blades (터보펌프 터빈 블레이드 형상 요소의 구조적 영향)

  • Yoon, Suk-Hwan;Jeon, Seong-Min;Kim, Jin-Han
    • Aerospace Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.30-38
    • /
    • 2011
  • Structural effects of several geometric parameters such as shroud thickness, edge roundness and fillet radius of turbopump turbine blade were investigated throughout transient finite element analyses. Usually shroud is inserted to increase aerodynamic efficiency, but blocks deformation of blades. Therefore it can increase stress level in a structural point of view. Likewise, edge roundness and fillet between blades are also parameters where aerodynamics and structural mechanics should compromise. In this study, overall stress levels according to the geometric parameters were thoroughly investigated and the results could be utilized to determine optimal geometries.

Turbopump+Gas generator Startup Simulation Cold Flow Test (터보펌프+가스발생기 연계시험기 시동모사 수류시험)

  • Kim, Seung-Han;Nam, Chang-Ho;Kim, Cheul-Woong;Moon, Yoon-Wan;Seol, Woo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.19-25
    • /
    • 2009
  • This paper includes test results of 30tonf-level TP+GG startup simulation cold flow test using liquid oxygen and kerosene. Test objectives, coupled test plant configuration, test condition, test procedure of performed tests, and test results are presented.

  • PDF

A Study on the Turbopump Rotordynamic Characteristics due to Bearing Housing Structural Flexibility (베어링 하우징의 구조 유연성에 따른 터보펌프 회전체동역학 특성 연구)

  • Jeon, Seong Min;Yoon, Suk-Hwan;Kim, Jinhan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.2
    • /
    • pp.35-41
    • /
    • 2014
  • A rotordynamic analysis is performed for a turbopump of 7 ton class liquid rocket engine considering bearing housing structural flexibility. Stiffness and damping characteristics of ball bearings and pump noncontact seals are reflected in a rotordynamic model. A dynamic model of bearing housing with lumped mass and stiffness is also applied to the rotordynamic analysis. Rotor critical speed and onset speed of instability are predicted from synchronous rotor mass unbalance response and complex eigenvalue analyses. The bearing housing structural flexibility effect on rotordynamic characteristics is investigated for both of bearing loaded and unloaded conditions respectively. From the numerical analysis, it is found that the effect of the housing structural flexibility significantly reduces the rotor critical speed and onset speed of instability.

Meanline Performance Analysis of a Fuel Pump for a Turbopump System (터보펌프용 연료펌프의 평균유선 성능해석)

  • Yoon, Eui-Soo;Choi, Bun-Seog;Park, Moo-Ryong;Rhi, Seok-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.1 s.14
    • /
    • pp.33-41
    • /
    • 2002
  • Low NPSH and high pressure pumps we widely used for turbopump systems, which have an inducer and operate at high rotating speeds. In this paper, a meanline method has been established for the preliminary design and performance prediction of pumps having an inducer for cavitating or non-cavitating conditions at design or off-design points. The method was applied for the performance prediction of a fuel pump. Predicted performances by the method are shown to be in good agreement with experimental results for cavitating and non-cavitating conditions. The established meanline method can be used for the performance prediction and preliminary design of high speed pumps which have a inducer, impeller and volute.

The Effect of Rotor Tip Geometry on the Performance of Turbopump Turbine (터보펌프 터빈의 로터 팁 형상에 따른 성능변화 연구)

  • Jeong, Eun-Hwan;Park, Pyun-Goo;Kim, Jin-Han
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.197-204
    • /
    • 2007
  • Effect of rotor tip geometry on the performance of supersonic impulse turbine was investigated experimentally. Using the shrouded supersonic impulse turbine of the 30ton class liquid rocket engine turbopump as a base model, the measured performance of de-shrouded rotor was compared. The effect of nozzle-rotor overlap also has been investigated. It has been found that the magnitude of turbine efficiency is largely affected by the existence of the rotor shroud. However, measured efficiency sensitivity of the de-shrouded supersonic impulse turbine with respect to turbine tip clearance was relatively smaller than that of high performance reaction turbine. It also has been found that there exists nozzle-rotor overlap value which results optimum efficiency in supersonic impulse turbine.

  • PDF

Axial Thrust Measurement of Fuel Pump for Liquid Rocket Engine (로켓엔진용 연료펌프의 축추력 측정)

  • Kim Dae-Jin;Hong Soon-Sam;Choi Chang-Ho;Kim Jin-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.358-362
    • /
    • 2005
  • An effective control of the axial thrust of a turbopump is one of the critical issues for its operational stability. In order to assure the stability of a turbopump-type fuel pump for a liquid rocket engine, an axial thrust measurement system was developed and a series of axial thrust tests were performed in water environment. In the tests, the axial thrust of the fuel pump at the design flowrate satisfied the axial force condition of the bearing of the pump. Also, it was found that by using orifices with different geometries in the secondary flow passage the overall axial thrust of the pump could be controlled.

  • PDF

Development of Inter-propellant Seal for High Thrust Turbopump (고추력 터보펌프용 추진제 혼합 방지 실 개발)

  • Kwak, Hyun-D.;Jeon, Seong-Min;Kim, Jin-Han
    • Tribology and Lubricants
    • /
    • v.24 no.6
    • /
    • pp.349-354
    • /
    • 2008
  • An inter-propellant seal (IPS) for high thrust turbopump is designed. With given operating conditions and requirements, the inter-propellant seal is designed to satisfy the leakage characteristics which is less than 0.1% of normal flow rate of pumps. A numerical analysis is developed to predict the leakage flow rate. The results show that the maximum leakage of LOX and kerosene are less than 0.1% of normal flow rate of pumps, respectively. Based on the numerical analysis results, the detail of IPS is performed. Finally a prototype of IPS is manufactured to perform sets of performance tests in the near future.

Critical Speed Analysis of the Liquid Rocket Turbopump (액체로켓 터보펌프의 임계 속도 해석)

  • Jeon, Seong-Min;Kwak, Hyun-Duck;Yoon, Suk-Hwan;Kim, Jin-Han
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.6
    • /
    • pp.92-99
    • /
    • 2005
  • Numerical analyses of critical speed and mass unbalance response are performed for a 30 ton thrust turbopump. The stiffness and damping of ball bearings and non-contact seals are quantified under aerodynamic and hydrodynamic loads induced by a fuel pump and turbine. Critical speed margin and tip displacements of the rotating parts are evaluated using a three-dimensional finite element method. The results are used to ensure the soundness of the rotordynamic design using an one-dimensional transfer matrix method. A further study shows that sufficient resonance margin may be assured via controlling the stiffness of the rotor support by employing an additional elastic ring to the bearing support.

An Investigation into the Three-dimensional Design of Turbine Rotor Blade for Turbopump (터보펌프용 터빈 로터 블레이드의 3차원 설계 연구)

  • Jeong, Sooin;Choi, Byoungik;Lee, Hanggi;Kim, Kuisoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1038-1044
    • /
    • 2017
  • We are working on improving the performance by applying the three-dimensional design element to the rotor blades of high pressure supersonic impulse turbine that drives turbo pump of liquid rocket engine. In this paper, based on the shape of a rotor blade of a turbopump turbine designed in the past, a three-dimensional shape is applied to a rotor blade through a stacking line change such as sweep and dihedral. After performing the flow analysis, the changes in the turbine performance characteristics for each design element were carefully examined and the results were summarized.

  • PDF

Investigation on the Strength and Vibration Safety of the Oxidizer Turbopump (산화제 터보펌프의 구조 강도 및 진동 안전성에 관한 연구)

  • Jeon, Seong-Min;Kim, Jin-han;Yang, Soo-Seok;Lee, Dae-Sung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.3 s.16
    • /
    • pp.25-32
    • /
    • 2002
  • Structural and dynamic analyses of inducer and impeller for an oxidizer turbopump are peformed to investigate the safety level of strength and vibration at a design point. Due to high rotational speed of turbopump, effects of centrifugal forces are carefully considered in the structural analysis. Hydrodynamic pressure is also considered as an external force applied to inducer and impeller blades. A three-dimensional Finite Element Method (FEM) is used for linear and nonlinear structural analyses with modified Newton-Raphson iteration method. After the nonlinear trim solution is obtained from the structural analysis, dynamic characteristics are obtained as a function of rotational speed from the linearized eigenvalue analysis at an equilibrium position. According to the results of numerical analysis, the safety margins of strength and vibration resonances are sufficient enough for safe operation within the requited life cycle.