• Title/Summary/Keyword: 터널 해석

Search Result 1,797, Processing Time 0.029 seconds

Three dimensional dynamic analysis of underground tunnels by coupling of boundary and finite elements (유한요소-경계요소 조합에 의한 터널의 3차원 동적해석)

  • 이찬우;김문겸;황학주
    • Computational Structural Engineering
    • /
    • v.8 no.3
    • /
    • pp.91-102
    • /
    • 1995
  • For the wave propagation problems, the influence of time-dependent dynamic behavior must be accounted in the analysis. In this study, the dynamic analysis method which combines finite elements and boundary elements is developed for the wave propagation problem modelling the infinity of medium through 3-D boundary elements and underground structure through degenerated finite shell elements. Performing dynamic analysis of underground tunnels by the proposed coupling method of boundary and finite elements, it is found that the change of the stiffness of structures has a good effect on the response. It is also found that the consideration of the repeating effect due to moving traffic loads which is difficult with existing 2-D dynamic analysis can be possible with the 3-D analysis in time domain.

  • PDF

Convergence change in a tunnel face approaching fault zones (파쇄대에 접근하는 터널의 내공변위 변화 해석)

  • Lee, In-Mo;Lee, Seung-Ju;Lee, Joo-Gong;Lee, Dae-Hyuck
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.3
    • /
    • pp.235-245
    • /
    • 2002
  • The purpose of this study is to figure out the tendency of tunnel convergence during excavation and to present a methodology for the prediction of a fault zone ahead of a tunnel face by analyzing three dimensional displacements in various ways. 3-D numerical analysis was performed to investigate changes of tunnel convergence vectors near a fault zone and to propose a flow chart for predicting fault zones. Results of the site investigation and results of trend line analysis of in-situ data were compared to verify the usefulness of a trend line analysis. It is concluded that the orientation of faults can be predicted by using stereonets and the direction of initial stresses can be predicted from the arm length of a displacement vector as a tunnel approaches fault zones. The results of the trend line analysis coincided with those of the site investigation, and a methodology for the prediction of a fault zone was proposed.

  • PDF

Study on the Effect of the Bearing Capacity Support of tunnel by Steel Rib in the Colluvial Soils (붕적층 지반에 적용된 터널에서 강재의 지보효과에 대한 연구)

  • Ahn, Sung-Youll;Lee, Jae-Young;Ahn, Kyung-Chul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.1
    • /
    • pp.31-40
    • /
    • 2006
  • The entrance and the exit structures of tunnels are often constructed on unfavorably soft soils (colluvial soils) as a result of environment-friendly design highlighted in recent years. For construction of such a tunnel, it is essential to secure sufficient bearing capacity of the lining supports as well as that of the surrounding soils. In this regard, H-shape steel-ribs with high stiffness are commonly used for lining supports. However, it was the past convention to ignore the effect of the steel-ribs in numerical evaluation of the structural safety. This study is intended to show how the shotcrete stresses are relieved by the steelribs, on the basis of numerical data obtained from 3-dimensional finite element analysis. The effect of steel ribs to shotcrete stresses is examined at different levels of application rates, i.e., 0%, 50%, 75% and 100% of the total stiffness. The data obtained from numerical analysis was compared with in-situ measurement. The effect of st eel ribs to shotcrete stresses was verified and appropriate total stiffness was proposed in the range of 50%~75%.

  • PDF

An Analysis Model of the Secondary Tunnel Lining Considering Ground-Primary Support-Secondary Lining Interaction (지반-1차지보재-2차라이닝의 상호작용을 고려한 터널 2차라이닝 해석모델)

  • 서성호;장석부;이상덕
    • Tunnel and Underground Space
    • /
    • v.12 no.2
    • /
    • pp.107-114
    • /
    • 2002
  • It is the common practice to over design the reinforcement for the secondary tunnel lining due to the lack of rational insight into the ground loosening loads. and due to the conservative application of the empirical design methods. The main loads of the secondary lining are the ground Loosening loads and the ground water pressure, and the ground load is critical in the reinforcement design of the secondary lining in the case of drained tunnel. If the external load is absent around a tunnel, the reasons of the load far secondary tunnel lining are the deterioration of the primary supports such as shotcrete, steel rib, and rockbolts. Accordingly, the analysis method considering the ground-primary supports-secondary lining interaction should be required tar the rational design of the secondary tunnel lining. In this paper, the interaction was conceptually described by the simple mass-spring model and the load transfer from the ground and primary supports to the secondary lining is showed by the ground-primary supports-secondary lining reaction curves fur the theoretical solution of a circular tunnel. And also, the application of this proposed model to numerical analysis is verified in order to check the potential far the tunnel with the complex analysis conditions.

A Tunnel Mock-up Test and Numerical Analysis on Steel Fiber Reinforced Shotcrete (강섬유 보강 숏크리트의 터널모형실험 및 수치해석적 검증)

  • You, Kwang-Ho;Jung, Ji-Sung;Park, Yeon-Jun
    • Tunnel and Underground Space
    • /
    • v.18 no.2
    • /
    • pp.107-117
    • /
    • 2008
  • In this study, the failure and deformation characteristics of steel fiber reinforced shotcrete (SFRS) which is a primary tunnel support was investigated to find out ground-support mutual behavior. To this end, a mock-up of a tunnel was made and experimented with the conditions of lateral earth pressure coefficient 0.5 and 1.0. During the tests, 11 hydraulic cylinders were used for loading. for better simulation of the lateral earth pressure effect, these cylinders were controlled separately by two groups; crown and side wall. Meanwhile, the deformation of shotcrete was measured by 11 LVDTs. Backfill material was also used fur better load transfer from hydraulic cylinders to shotcrete. For the validation of the mock-up test results, 3D numerical analysis is carried out. To do numerical analysis under the same condition as a mock-up test, the load history curve which was obtained during the test was tried to be simulated using an individual FISH routine in the numerical analysis.

Study on the 3 dimensional numerical analysis method for shield TBM tunnel considering key factors (주요 영향요소를 고려한 쉴드TBM 터널 3차원 수치해석기법 연구)

  • Jun, Gy-chan;Kim, Dong-hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.513-525
    • /
    • 2018
  • A 3 dimensional numerical analysis for shield TBM tunnel should take into account various characteristics of the shield TBM excavation, such as gap, tail void, segment installation, and backfill injection. However, analysis method considering excavation characteristics are generally mixed with various method, resulting in concern of consistency and reliability degradation of the analytical results. In this paper, a parametric study is carried out by using actually measured ground settlement data on various methods that can be used for 3 dimensional numerical analysis of shield TBM tunneling. As a result, we have analyzed and arranged an analytical method to predict similarly the behavior of ground settlement and tunnel face pressure at the design stage. Skin plate pressure, backfill pressure and soil model have been identified as the most significant influences on the ground settlement. The grout pressure model is considered to be applicable when there is no volume loss information on the excavated ground, such as seabed tunnels, or when it is important to identify the behavior around a tunnel, such as surface settlement as well as face pressure. And it is considered that designers can use these guidelines as a base material to perform a reasonable 3 dimensional numerical analysis that reflects the ground conditions and the features of the shield TBM tunneling.

Effect of Tunneling and Groundwater Interaction on Tunnel Behavior (터널시공과 지하수의 상호작용이 터널의 거동에 미치는 영향)

  • Yoo, Chung-sik;Kim, Sun-bin;Bae, gyu-jin;Shin, hyu-sung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.2
    • /
    • pp.97-108
    • /
    • 2005
  • This paper presents the effect of tunneling and groundwater interaction on tunnel behavior. As part of this study, design issuses for tunneling situations similar to that considered in this study are first identified. A parametric study is then conducted on tunneling situations frequently encountered in Seoul area using a 3D stress-pore presure coupled finite-element model with emphasis on the effects of ground and lining permeabilities. The results indicate that tunneling in water bearing ground results in a deeper and wider settlement trough, increased axial thrusts in shotcrete lining than those without the groundwater. Also revealed is that the axial thrusts in shotcrete lining are governed by the relative permeability between the ground and the lining. Design implications of the findings from this study are discussed.

  • PDF

Development and application of 3D migration techniques for tunnel seismic exploration (터널내 탄성파 탐사의 3차원 구조보정기법 개발 및 현장적용)

  • Choi, Sang-Soon;Han, Byeong-Hyeon;Kim, Jae-Kwon;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.3
    • /
    • pp.247-258
    • /
    • 2004
  • Two 3-dimensional data processing techniques to predict the fractured zone ahead of a tunnel face by the tunnel seismic survey were proposed so that the geometric formation of the fractured zone could be estimated. The first 3-dimensional data processing technique was developed based on the principle of ellipsoid, The input data needed for the 3D migration can be obtained from the 2-dimensional tunnel seismic prediction (TSP) test where the TSP test should be performed in each sidewall of a tunnel. The second 3-dimensional migration technique that was developed based on the concept of wave travel plane was proposed. This technique can be applied when the TSP is operated with sources in one sidewall of a tunnel while the receivers are installed in both sidewalls. New migration technique was applied to an in-situ tunnelling site. The 3-dimensional migration was performed using measured TSP data and its results were compared with the geological investigation results that were monitored during tunnel construction. This comparison revealed that the proposed migration technique could reconstruct the discontinuity planes reasonably well.

  • PDF

Sensitivity analysis of tunnel stability with a consideration of an excavation damaged zone (암반손상대를 고려한 터널 안정성 민감도 분석)

  • Kim, Jin-Soo;Kwon, Sanki
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.1
    • /
    • pp.91-104
    • /
    • 2014
  • An Excavation Damaged Zone (EDZ), in which rock properties are permanently changed due to blasting impact or stress redistribution, can influence the behavior and stability of structures. In this study, the mechanical stability of an underground opening was simulated by using FLAC, which is a two-dimensional modeling code, with a consideration of EDZ. A sensitivity analysis was also carried out with fractional factorial design. From the modeling, it was found that the behavior and the stability of an underground tunnel are strongly dependent on the existence of the EDZ. The sensitivity analysis showed that the key parameters affecting the factor of safety around the tunnel are in-situ stress ratio, depth, cohesion, reduction ratio, internal friction angle, and height and width of the tunnel. It is necessary to consider the EDZ, which can significantly affect mechanical stability in tunnel design.

A Study on Numerical Analyses and Field Application for Tunneling Using the Critical Strain in the Ground (지반의 한계변형률을 이용한 터널수치해석 및 현장 적용성 연구)

  • Park, Si-Hyun
    • The Journal of Engineering Geology
    • /
    • v.18 no.3
    • /
    • pp.339-347
    • /
    • 2008
  • This study was carried out to assess quantitatively the safety of a tunnel by using critical strains in the ground. Critical strain is a new material property of the ground. It can be applied as deformation limits in the ground due to excavation using the measured displacement at the tunnel construction site. To achieve this purpose, the critical strain concept was reviewed and applied to assess the tunnel safety. First of all, the calculated excavation displacements of a circular tunnel by commercial programs were investigated and inputted into a feedback analysis module to calculate strains in the ground. Then the safety of tunnels was evaluated based on the critical strain concept. Subsequently the measured displacements obtained in the field are utilized practically to assess the safety of tunnels using the critical strain concept. Through this study, it was confirmed that the critical strain concept is useful to assess the safety of tunnels quantitatively.