• Title/Summary/Keyword: 터널 안정성 평가

Search Result 424, Processing Time 0.025 seconds

Study on the Seepage Forces Acting on the Tunnel Face with the Consideration of Tunnel Advance Rate (터널 굴진율을 고려한 막장에서의 침투력에 관한 연구)

  • 남석우;이인모
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.221-228
    • /
    • 2002
  • The stability of a tunnel face is one of the most important factors in tunnel excavation. Especially, if a tunnel is located under groundwater level, groundwater may flow into the tunnel face and seepage forces acting on the tunnel face due to groundwater flow may affect seriously the stability of the tunnel face. Therefore, the seepage pressure at the tunnel face should be considered fir the proper design and safe construction of a tunnel. In this paper, the effect of tunnel advance rate on the seepage forces acting on the tunnel face was studied. The finite element program to analyze the groundwater flow around a tunnel with the consideration of tunnel advance rate was developed. Using the program, the parametric study for the effect of the tunnel advance rate and hydraulic characteristics of the ground on the seepage forces acting on the tunnel face was made. From this study, it was concluded that the tunnel advance rate must betaken into consideration as an additional parameter to assess the seepage forces at the tunnel face and a rational design methodology fer the assessment of support pressures required for maintaining the stability of the tunnel face was suggested for undetwater tunnels.

Evaluation of tunnel face stability based on upper bound theorem (상한치 이론에 근거한 터널 막장의 안정성 연구)

  • Lee, In-Mo;Lee, Jae-Sung;Nam, Seok-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.1
    • /
    • pp.3-11
    • /
    • 2003
  • Face stability of a tunnel is a main concern during tunnel excavation. However, there has been only a few studies on this problem while a lot of researches on the support systems have been carried out. In addition, when tunneling is performed below the groundwater level, the groundwater flows into the tunnel so that the seepage forces generated on the tunnel face might give rise to a serious potential for the face instability. In this study, the face stability was evaluated by simultaneously considering two factors: one is the effective stress calculated by upper bound theorem; the other is the seepage forces acting on the tunnel face obtained by numerical analysis under the condition of steady-state groundwater flow. Tunneling in difficult geological conditions often requires auxiliary techniques to guarantee safe tunnel excavations and/or to prevent damage to structures and services around the tunnel. The steel pipe-reinforced multistep grouting has been recently applied to tunnel sites in Korea. Face stability of a tunnel with the steel pipe-reinforced multistep grouting was also analyzed in this study.

  • PDF

Assessment of influence of old mine gangway on stability of road tunnel in mine area (광산지역 도로 터널링에 있어 폐갱도가 터널 안정성에 미치는 영향 평가)

  • Synn, Joong-Ho;Shin, Hee-Soon;Sunwoo, Choon;Park, Chan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.2
    • /
    • pp.123-133
    • /
    • 2002
  • In the construction of the road tunnel in mine area, old mine gangways can cause the instability of the tunnel. In this case study, the field investigation is carried out to figure out the location of old gangways adjacent to the tunnel, and their influence on the tunnel stability is estimated according to the location pattern and rock condition by FLAC analysis. The grouting reinforcement of tunnel crown region and old gangway is suggested and its role on assurance of the tunnel stability is also verified. It can be said from this study that the effect of the old gangway on the stability of tunnel varies with the dimension of gangway, distance from the tunnel, rock condition and groundwater, and therefore these paramerter should be compositively considered in the assessment of the tunnel stability.

  • PDF

Safety Effect Evaluation of Existing Metro Tunnel by Deep Urban Tunnelling (대심도 도심지 터널시공에 의한 기존 지하철 터널 안전영향 평가)

  • Han, Sang-Min;Lee, Dong-Hyuk;Lee, Sung-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.9
    • /
    • pp.37-50
    • /
    • 2021
  • Recently, due to the expansion of urban infrastructure using underground spaces in urban areas, many adjacent constructions and excavations have been made carried out between existing facilities, and complaints related to the stability of existing facilities due to close construction have become significant issues. In this study, it was closely reviewed for the existing metro tunnel structure in the new Dongbuk urban metro railway to determine the behavioral characteristics of tunnel structure according to adjacent tunnel construction. Also, it was analysed the evaluation of the safety zone and excavation method for metro tunnel structure. And after a detailed damage assessment, track irregularities and structural calculation by using a numerical analysis, stability of the metro tunnel structure according to nearby tunnel excavation was evaluated to be secured for safety. This study is expected to be applied as practical reference to review the evaluation of safety effects of existing tunnel structure and buildings according to adjacent construction in complex deep urban tunnelling.

Theoretical approach for ground behaviour during tunnelling in soils (토사터널굴진시 지반거동에 대한 이론적 접근에 대한 연구)

  • Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.4
    • /
    • pp.301-312
    • /
    • 2003
  • This paper considers the stresses and pore pressures induced in soft ground due to tunnelling and it presents and discusses the approach methods for estimating the stability of the tunnel and its heading during drained and undrained condition. In practical, the undrained analyses of the face stability of shield tunnelling in soft soil, are carried out based on the field data measured during tunnelling and the results are also evaluated.

  • PDF

Stability analysis of a 2 arch tunnel considering excavation sequence (굴착단계를 고려한 2 아치 터널의 안정성 해석)

  • You, Kwang-Ho;Park, Yeon-Jun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.2
    • /
    • pp.167-174
    • /
    • 2002
  • In this study, a numerical stability analysis was performed for a large tunnel considering excavation sequence. In most cases, stability of a tunnel is analyzed based on the stability of the final excavation stage only. In this study, stability analysis of a tunnel was performed at each excavation stage. In summary, it can be inferred that there is no problem in stability of the tunnel. However, thorough and careful measurements are recommended. Also, it is found that the stability of the tunnel at the 5th excavation stage when the right half of the main tunnel is excavated is rather lower than that of the tunnel at the final excavation stage.

  • PDF

Hydraulic stability evaluation for deep tunnel on continuous precipitation (연속강우에 대한 대심도 터널의 수리적 안정성 평가)

  • Oh, Jun Oh;Park, Jae Hyeon;Park, Chang Keun;Jun, Sang Mi
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.99-99
    • /
    • 2016
  • 최근 홍수의 특성과 피해 양상은 과거와는 다르게 변화하고 있으며, 급격한 도시화로 인하여 기존 하천유역의 저류 능력이 감소하였는데 이러한 한계를 극복하기 위하여 이미 외국에서는 대심도 터널을 활용한 홍수재해 관리방안이 오래전부터 활용되어 왔다. 본 연구에서는 현재 서울시에 건설중인 '신월 빗물저류배수시설' 연속강우 시 대심도 터널의 수리적 안정성 평가와 운영방안 수립을 위한 수리모형실험을 실시하였다. 모형은 Froude 상사법칙을 사용하여 원형의 1/50크기로 제작하였다. 모형의 전체 저류 가능량은 모형기준 $2.78m^3$ (원형 $347,778m^3$)이며, 터널 내 잔류수는 전체 저류 가능량의 0 ~ 100%까지 10%씩 변화시켜 실험 CASE를 선정하였다. 각 실험CASE별 수직 유입구 안정성 평가를 실시한 결과 터널 내 잔류수가 10%~80%까지 존재 할 때는 저지수직구1에서의 압축공기 폭발현상으로 인한 월류현상이 발생하였으며, 10%~40%까지는 저지수직구2에서 월류현상이 발생하였다. 하지만 고지수직구에서는 모든 CASE에서의 공기폭발 현상 및 월류현상이 발생하지 않아 유입성능 및 공기배출 성능이 충분히 발휘되고 있는 것으로 분석되었다. 또한 저지수직구1에서의 월류현상 발생 시점은 5분55초에서 3분42초까지 빨라졌으며 저지수직구2에서의 월류현상 발생 시점은 5분57초에서 4분57초로 빨라졌다. 이는 터널 내 잔류수량이 증가할수록 터널 내 만관시점이 빨라져 발생하며, 저지수직구1,2에서의 압축공기 폭발현상 및 월류 현상은 터널 내에서 발생한 반사파의 영향으로 판단된다. 차후 터널 내 반사파 발생에 대한 연구가 추가적으로 진행되어야 할 것이다.

  • PDF

A study on the evaluation method of blow-out and segment lining buoyancy stability of a slurry shield TBM (쉴드TBM 이수분출 및 세그먼트라이닝 부력 안정성 평가방법 연구)

  • Jang, Yoon-Ho;Kim, Hong-Joo;Shin, Young-Wan;Chung, Hyuk-Sang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.5
    • /
    • pp.375-393
    • /
    • 2022
  • This study was deal with blow-out and buoyancy stability evaluation method for slurry shield TBM. When applying a slurry shield TBM for the construction of a shallow tunnel under river or sea, the stability of slurry blow-out and segment lining buoyancy should be evaluated. However, there is a problem in that the currently applied theoretical formula is somewhat complicated, making it inconvenient to calculate in practice. In this study, some simple charts were proposed to easily evaluate the stability of slurry blow-out and segment lining buoyancy. In addition, the buoyancy safety factor of segment lining using the strength reduction method was evaluated and compared with the buoyancy safety factor based on the theoretical formula. The buoyancy safety factor by the theoretical formula was evaluated to be rather small, and it was confirmed that it was on the safe side. The simplified charts for the evaluation of slurry blow-out and buoyancy stability presented in this study are expected to be usefully utilized in the planning and design of undersea tunnels.

A Study on the Stability of Twin Tunnels in Anisotropic Rocks Using Scaled Model Tests (이방성 암반내 쌍굴터널의 안정성에 대한 모형실험 연구)

  • Kim, Jong-Woo;Kim, Myeong-Kyun
    • Tunnel and Underground Space
    • /
    • v.22 no.3
    • /
    • pp.205-213
    • /
    • 2012
  • In this study, scaled model tests were performed to investigate the stability of twin tunnels constructed in anisotropic rocks with $30^{\circ}$ inclined bedding planes under the condition of lateral pressure ratio, 2. Five types of test models which had respectively different pillar widths and shapes of tunnel sections were experimented, where both crack initiating pressures and deformation behaviors around tunnels were investigated. The models with shallower pillar width showed shear failure of pillar according to the existing bedding planes and they were cracked under lower pressure than the models with thicker pillar width. In order to find the effect of tunnel sectional shape on stability, the models with four centered arch section, circular section and semi-circular arch section were experimented. As results of the comparison of the crack initiating pressures and the deformation behaviors around tunnels, the semi-circular arched tunnel model was the most unstable whereas the circular tunnel model was the most stable among them. Furthermore, the results of FLAC analysis were qualitatively coincident with the experimental results.