DOI QR코드

DOI QR Code

A study on the evaluation method of blow-out and segment lining buoyancy stability of a slurry shield TBM

쉴드TBM 이수분출 및 세그먼트라이닝 부력 안정성 평가방법 연구

  • 장윤호 (국가철도공단) ;
  • 김홍주 ((주)하경엔지니어링 터널지반부) ;
  • 신영완 ((주)하경엔지니어링 터널지반부) ;
  • 정혁상 (동양대학교 철도건설안전공학과)
  • Received : 2022.07.22
  • Accepted : 2022.08.16
  • Published : 2022.09.30

Abstract

This study was deal with blow-out and buoyancy stability evaluation method for slurry shield TBM. When applying a slurry shield TBM for the construction of a shallow tunnel under river or sea, the stability of slurry blow-out and segment lining buoyancy should be evaluated. However, there is a problem in that the currently applied theoretical formula is somewhat complicated, making it inconvenient to calculate in practice. In this study, some simple charts were proposed to easily evaluate the stability of slurry blow-out and segment lining buoyancy. In addition, the buoyancy safety factor of segment lining using the strength reduction method was evaluated and compared with the buoyancy safety factor based on the theoretical formula. The buoyancy safety factor by the theoretical formula was evaluated to be rather small, and it was confirmed that it was on the safe side. The simplified charts for the evaluation of slurry blow-out and buoyancy stability presented in this study are expected to be usefully utilized in the planning and design of undersea tunnels.

본 논문은 이수식 쉴드TBM의 이수분출 안정성 및 세그먼트라이닝 부력에 대한 안정성 평가법의 제안에 대한 내용을 다루고 있다. 토피가 얇은 하·해저터널 건설을 위해 이수식 쉴드TBM 적용 시 이수분출 안정성 및 세그먼트라이닝 부력 안정성을 평가하여야 하는데 현재 적용되는 이론식은 다소 복잡함에 따라 실무적으로 계산이 불편한 문제점이 있다. 본 연구에서는 이수분출 안정성 및 세그먼트라이닝 부력 안정성 평가방법을 고찰하고 터널 계획단계에서 간편하게 이수분출 안정성과 부력 안정성을 평가하는 간편도표를 제안하였다. 또한, 강도감소법을 활용한 세그먼트라이닝에 작용하는 부력 안전율을 평가하고 이론식에 의한 부력 안전율과 비교·분석을 수행하였다. 본 연구에서 제시된 이수분출 및 부력 안정성 평가를 위한 간편도표는 하·해저터널 계획 및 설계 시 유용하게 활용될 수 있을 것으로 기대된다.

Keywords

References

  1. Koh, S.Y., Shin, H.K., La, Y.S., Jung, H.S. (2020), "A study on the face pressure control and slurry leakage possibility using shield TBM model test", Journal of Korean Tunnelling and Underground Space Association, Vol. 22, No. 3, pp. 277-291. https://doi.org/10.9711/KTAJ.2020.22.3.277
  2. KTA Tunnel Engineering Series Publishing Committee (2022), Advanced TBM tunnelling - theory and practice, Korean Tunnelling and Underground Space Association, CIR, Seoul, pp. 43-48.
  3. Liu, X.Y., Yuan, D.J. (2015), "Mechanical analysis of anti-buoyancy safety for a shield tunnel under water in sands", Tunnelling and Underground Space Technology, Vol. 47, pp. 153-161. https://doi.org/10.1016/j.tust.2014.12.005
  4. MIDAS IT (2013), Midas GTS NX manual - Analysis reference, MIDAS Information Technology Co., Ltd., pp. 224-228.
  5. Minh Ngan, V.U., Broere, W., Bosch, J. (2015), "The impact of shallow cover on tunnelling in soft soil", Proceedings of the ITA WTC 2015 Congress and 41st General Assembly, Dubrovnik, Croatia.
  6. Ministry of Land, Infrastructure and Transport (2021), "Multi-Utility Tunnel Main Body Design (KDS 29 14 00)", South Korea.
  7. Ng, C.W.W., Springman, S.M. (1994), "Uplift resistance of buried pipelines in granular materials", Proceedings of the International Conference Centrifuge 94, Singapore, pp. 753-758.
  8. Palmer, A.C., White, D.J., Baumgard, A.J., Bolton, M.D., Barefoot, A.J., Finch, M., Powell, T., Faranski, A.S., Baldry, J.A.S. (2003), "Uplift resistance of buried submarine pipelines: comparison between centrifuge modelling and full-scale tests", Geotechnique, Vol. 53, No. 10, pp. 877-883. https://doi.org/10.1680/geot.2003.53.10.877
  9. Park, J.S. (2021), "The basics of TBM construction", Magazine of Korean Tunnelling and Underground Space Association, Vol. 23, No. 1, pp. 44-60.
  10. Roh, B.K., Koh, S.Y., Choo, S.Y. (2012), "Infiltration behaviour of the slurry into tunnel face during slurry shield tunnelling in sandy soil", Journal of Korean Tunnelling and Underground Space Association, Vol. 14, No. 3, pp. 261-275. https://doi.org/10.9711/KTAJ.2012.14.3.261
  11. Trautmann, C.H., O'Rourke, T.D., Kulhawy, F.H. (1985), "Uplift force-displacement response of buried pipe", Journal of Geotechnical Engineering ASCE, Vol. 111, No. 9, pp. 1061-1076. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:9(1061)
  12. White, D.J., Barefoot, A.J., Bolton, M.D. (2001), "Centrifuge modeling of upheaval buckling in sand", International Journal of Physical Modelling in Geotechnics, Vol. 1, No. 2, pp. 19-28. https://doi.org/10.1680/ijpmg.2001.010202
  13. Zienkiewicz, O.C., Humpheson, C., Lewis, R.W. (1975), "Associated and non-assosiated visco-plasticity and plasticity in soil mechanics", Geotechnique, Vol. 25, No. 4, pp. 671-689. https://doi.org/10.1680/geot.1975.25.4.671
  14. Zizka, Z., Thewes, M. (2016), Recommendations for face support pressure calculations for shield tunnelling in soft ground, Version 10, DAUB, ITA-AITES, Cologne, Germany, pp. 22-23.