• Title/Summary/Keyword: 터널붕락

Search Result 86, Processing Time 0.024 seconds

Problems and Reinforcement Measures for Rock Structures in Fault Zone (단층대 구간에서의 암반구조물의 문제와 보강대책)

  • Kim, Young-Geun;Han, Byeong-Hyeon;Sin, Young-Wan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.170-181
    • /
    • 2007
  • 암반내 존재하는 단층은 암반거동에 중대한 영향을 미치게 되며, 특히 단층내에 충전물이 협재되어 있거나, 파쇄대가 넓게 발달한 경우에는 암반구조물의 안정성에 보다 심각한 문제를 가져오는 경우가 많다. 이는 단층의 불연속적인 거동과 충전물의 거동이 복합적으로 작용하게 되며, 장기적인 시간을 두고 나타나기 때문이다. 본 검토에서는 단층의 공학적 특성을 분석하고, 단층대 구간에서는 보강설계 사례 및 단층대 구간에서의 붕락사고로 인하여 문제가 발생한 현장사례분석을 통하여 단층이 암반사면이나 터널과 같은 암반 구조물에 미치는 영향을 검토하였다. 이를 통하여 단층과 점토 그리고 지하수 등의 복합거동에 의한 장기적이고 잠재적인 거동을 수반할 수 있는 단층의 공학적 문제점을 고찰하였다.

  • PDF

New Observational Design and Construction Method in Tunnels and Its Application to Very Large Cross Section Tunnel (터널의 신 정보화 설계시공법과 극대단면 터널에의 적용)

  • Hwang Jae-Yun
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.5-14
    • /
    • 2004
  • The observational design and construction method in tunnels is becoming important recently. In many tunnels, enormous cost and time are consumed to cope with the failing or sliding of rock blocks, which could not be predicted because of the complexity of rock discontinuities. It is difficult to estimate the properties of rock masses before the construction. In this paper, a new observational design and construction method in tunnels are proposed, and then applied to the example of the very large cross section tunnel based on actual discontinuity information observed in situ. The items examined in developing a program for the new observational design and construction method are the following ones: generality, precision, high speed, and friendly usability. At the very large cross section tunnel, 7 key blocks were judged to be unstable because they could not be supported by standard supports. Supplementary supports were installed to these 7 key blocks before the excavation. It is possible to detect key blocks all along the tunnel exactly by using the numerical analysis program developed for the new observational design and construction method in the very large cross section tunnel. This computer simulation method with user-friendly interfaces can calculate not only the stability of key blocks but also the design of supplementary supports.

Monitoring of Cut-Slope Behavior with Consideration of Rock Structure and Failure Mode (개착사면의 구조적 특성과 파괴양상을 고려한 계측 해석)

  • Cho, Tae-Chin;Park, So-Young;Lee, Sang-Bae;Lee, Geun-Ho;Won, Kyung-Sik
    • Tunnel and Underground Space
    • /
    • v.16 no.6 s.65
    • /
    • pp.451-466
    • /
    • 2006
  • Analysis of slope behavior concerning the structural characteristics of field rock mass can be processed by virtue of borehole information of joint orientation and position acquired from DOM drilled core. Anticipated sliding potential of pre-failed rock slope is analyzed and the regional slope instability is investigated by inspecting the hazardous joints and blocks the traces of which is projected on the cut-face. Cross section has been set at the center of rock slope and the traces of both joints and tetrahedral blocks, which potentially can induce the slope failure, are drawn to investigate the failure modes and the triggering mechanism. Automated monitoring system has been established to measure the slope movement and especially, inclinometer has been installed inside DOM borehole to analyze the slope movement by considering the internal rock structure. Algorithms for predicting the slope failure time have been reviewed and the significance of heavy rainfall on the slope behavior has been investigated.

Stability analysis of a tunnel above mined cavities (석탄 채굴공동 상부 터널의 안정성 분석)

  • Song, Won-Kyong;Chung, So-Keul;Han, Kong-Chang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.2
    • /
    • pp.135-141
    • /
    • 2002
  • This research has been conducted to investigate the influence of mined cavities on a tunnel to be constructed around a coal mine. The location and dimension of cavities were supposed by analysing synthetically geological structures and condition of coal beds as well as gangway map since there does not exist any map describing mined cavities. Detailed geological and geophygical survey have also been carried out for the purpose of understanding the geological structure and rock mass conditions. The two dimensional numerical analysis with FLAC has been performed on the geological sections reconstituted from the obtained information and the affects of mined cavities on the tunnel have been assessed.

  • PDF

A Numerical Study for Ground Stability Assessment in ○○Mine (○○광산의 지반 안정성 평가를 위한 수치해석적 연구)

  • Son, Min;Moon, Hyun-Koo
    • Tunnel and Underground Space
    • /
    • v.26 no.6
    • /
    • pp.484-492
    • /
    • 2016
  • This study is the numerical analysis for the ground stability assessment in ${\bigcirc}{\bigcirc}$mine. The subsidence factors applied to the numerical analysis were as follows. First, the deterioration of the rock mass properties by excavation of the disturbed zone. Second, using the average lateral pressure coefficient of Korea. Third, a study of the mine history. Fourth, the excavating collapsed rock mass in numerical analysis based on the assumption that the rock mass around the goaf was collapsed due to the mining. The developed methods were applied to the cross section (5+10) of the actual subsidence in ${\bigcirc}{\bigcirc}$mine. The feasibility of the numerical analysis methods was confirmed by providing the same results as those of the actual subsidence. Next, the developed methods were applied to the cross section (3+10) that had a high probability of subsidence and the ground stability was evaluated. The analysis results show that the vertical displacement for the 5+10 cross section occurs at a maximum of 46 mm, whereas the analysis results show that the vertical displacement for the 3+10 cross section occurs at a maximum of 7 mm. Hence, it is concluded that the probability for subsidence is low.

The effect of curvature at the bottom of a soft ground tunnel by numerical analysis (수치해석에 의한 연약지반 터널의 바닥부 곡률의 영향 분석)

  • You, Kwangho;Kim, Kangsan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.2
    • /
    • pp.107-118
    • /
    • 2021
  • Due to the acceleration of road construction, the number and extension of tunnels are increasing every year. A lot of research has been done on the collapse of tunnels, but research on the invert heaving is insufficient. Therefore, in this study, a sensitivity analysis was performed using a geotechnical general-purpose program to analyze the effect of the invert curvature of a tunnel excavated on the soft ground. As a result, it was quantitatively confirmed that the stability of a tunnel was increased as the curvature of the tunnel invert was increased so that the safety factor was calculated to be large regardless of the ground conditions and the thickness of the support. In addition, it was confirmed that the stability of the tunnel was increased by reducing the convergence of the tunnel and the maximum bending stress supported by shotcrete. Therefore, when a tunnel is excavated on soft ground, it is believed that applying a curvature to the invert will increase the stability of the tunnel.

Numerical sensitivity analysis for the reinforcement effect of a curvature of a tunnel floor on soft grounds (연약지반에 위치한 터널 바닥부 곡률의 보강효과에 대한 수치해석적 민감도 분석)

  • You, Kwang-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.2
    • /
    • pp.61-76
    • /
    • 2021
  • As the number of existing road tunnels increases every year, collapse and floor heaving accidents occur frequently during construction. The collapse among tunnel accidents dominates, so that studies related to the floor heaving are relatively insufficient. Accordingly, many studies to reinforce the lower part of the tunnel have been conducted, but the analysis on the effect of the curvature of the tunnel floor is insufficient. Therefore, in this study, the effects of the upper analysis area height and the coefficient of lateral earth pressure of the tunnel located on a tuff deterioration zone with a large rock cover, as well as the floor curvature, were examined through sensitivity analysis. As a result of the analysis, it turned out that the overall stability of the tunnel increases as the floor curvature increases, the coefficient of lateral earth pressure decreases, and the upper analysis region increases.

Analysis of Sinkhole Formation over Abandoned Mine using Active-Passive-Active Finite Elements (폐광지역에서의 싱크홀 발생 규명을 위한 Active-Passive-Active 유한요소 기법 연구)

  • Deb Debasis;Shin Hee-Soon;Choi Sung O.
    • Tunnel and Underground Space
    • /
    • v.14 no.6 s.53
    • /
    • pp.411-422
    • /
    • 2004
  • Sinkhole subsidence occurs over abandoned mine workings and can be detrimental to human lives, damage to properties and other surface structures. In this study, simulation of sinkhole development process is performed using special finite element procedure. Especially, creation of mine voids due to roof falls and generation of goaf from broken rocks are simulated using active-passive-active finite elements. An active or solid element can be made passive or void once the tensile failure criterion is satisfied in the specified sinkhole formation zone. Upon completion of sinkhole development process, these passive elements in again be made active to simulate goal region. Several finite element models are analyzed to evaluate the relationships between sinkhole formation with width of gallery. depth of mine, roof condition and bulking factor of roof rocks. This study demonstrates that the concept of passive elements in numerical analysis can be used effectively for analyzing sinkhole formation or roof fall phenomenon in general.

Auxiliary Reinforcement Method for Collapse of Tunnel in the Coal Shale Fractured Zone (탄질 셰일 파쇄구간에서 터널 붕락부 거동 및 보강 연구)

  • Kim, Nagyoung;Moon, Changyeul;Park, Yongseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.6
    • /
    • pp.85-95
    • /
    • 2007
  • It is difficult for seismic survey to get hold of characteristic of coal shale fractured zone and if coal shale zone did not come into contact with underground water, coal shale zone has characteristic of good strength. But in case coal shale zone is exposed by excavation or blasting to the air, strength of coal shale zone decreases in short term and weathering of coal shale zone progresses rapidly. Therefore, the prediction of tunnel collapse is not easy in the coal shale zone and the great portion of tunnel collapse takes place in a moment. From a view point of strength, after twelve hours form result of point load test strength of coal shale decreases by fifty six percent when coal shale zone come into contact with ground water. The standard reinforcement design of coal shale fractured zone was presented in the paper.

  • PDF

Current Technical Tendency of Chemical Grouting (약액주입공법의 국내ㆍ외 기술 동향)

  • 김진춘
    • Magazine of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.47-53
    • /
    • 2002
  • 근래 지구촌의 산업화가 가속됨에 따라 대지의 활용도가 급속하게 증가하고 있으며 아울러 인구의 증가 및 개개인 삶의 공간적 범주가 점점 확대되면서 지구상에 광범위하게 분포되어 있는 연약지반으로의 관심이 집중되고 있는 실정이다. 최근 국내에서도 고속철도, 인천국제공항, 도심지 지하철 및 서ㆍ남해안 항만공사 등 대규모 국가건설공사가 진행 중에 있으며 더더욱 임해시설의 확충이라든지 인공섬 등의 건설이 활발해지면서 연약지반에 대한 관심이 고조되고 있다. 하지만 연약지반의 특성을 경시한 나머지 터널의 붕락, 주변지반 및 인접건물의 부등침하, 측방유동에 의한 구조물변위 등 대형 안전사고가 빈발하게 발생되어 왔다. 이러한 안전사고의 대책으로서 지반보강을 위한 여러 가지 신공법이 개발되었고, 새로운 터널보조공법이 국내 지하철건설현장에서 널리 쓰여지고 있으며 이러한 공법 등을 통한 성과도 적지 않게 보고되고 있다.(중략)