• Title/Summary/Keyword: 터널붕괴

Search Result 167, Processing Time 0.022 seconds

Assessment of Tunnel Collapse Load by Closed-Form Analytical Solution and Finite Element Analysis (근사적인 해석법과 유한요소해석에 의한 터널붕괴하중 평가)

  • Lee, Yong-Joo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.185-197
    • /
    • 2007
  • Limit analysis of upper and lower bound solutions has been well developed to provide the stability numbers for shallow tunnels in cohesive soil ($c_u$ material), cohesive-frictional soil (c'-$\phi$' material) and cohesionless soil ($\phi$'material). However, an extension of these methods to relatively deep circular tunnels in the cohesionless soil has been explored rarely to date. For this reason, the closed-form analytical solutions including lower bound solution based on the stress discontinuity concept and upper bound solution based on the kinematically admissible failure mechanism were proposed for assessing tunnel collapse load in this study. Consequently, the tunnel collapse load from those solutions was compared with both the finite element analysis and the previous analytical bound solutions and shown to be in good agreement with the FE results, in particular with the FE soil elements located on the horizontal tunnel axis.

A Study on the Geotechnical Characteristics of Tunnel Collapse (국내외 터널 붕락의 지반공학적 특징에 관한 연구)

  • Seo, Kyoungwon;Kim, Woongku;Baek, Kihyun
    • Journal of Korean Society of societal Security
    • /
    • v.2 no.4
    • /
    • pp.75-81
    • /
    • 2009
  • This paper presents the geotechnical characteristics of tunnel co \l apse based on the case studies. For domestic cases, most collapses are likely to happen along the weakest zone of shear strength due to the change of stresses induced by excavation specially when soft or weathered rock exist in front of a tunnel. In other words, the collapse of a tunnel occurs along the highly weathered fractured zone due to blasting and excavation. In Europe, collapses have been occurred by one joint group even though the ground is relatively fresh and for the rocks of which RQD is over 50%. In addition, the amount of ground water flow does not seem to be seriously affected by the RQD range.

  • PDF

과천선 사당-금정간 복선전철 제4공구 현장의 터널구간 붕괴재해 원인분석

  • korea construction safety engineering association
    • Journal of the Korea Construction Safety Engineering Association
    • /
    • v.2 no.2 s.4
    • /
    • pp.82-104
    • /
    • 1992
  • 최근 지하철공사 발주량 증가에 따라 일부현장에서 붕괴사고가 발생되고 있고 유사사고의 발생가능성도 높아, 사고예방에 도움되고자 하는 목적에서 이번사고의 원인규명 및 보강대책을 제시한다. -편집자 주-

  • PDF

Quantitative preliminary hazard level simulation for tunnel design based on the KICT tunnel collapse hazard index (KTH-index) (터널 붕괴 위험도 지수(KTH-index)에 기반한 터널 설계안의 정량적 사전 위험도 시뮬레이션)

  • Shin, Hyu-Soung;Kwon, Young-Cheul;Kim, Dong-Gyou;Bae, Gyu-Jin;Lee, Hong-Gyu;Shin, Young-Wan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.4
    • /
    • pp.373-385
    • /
    • 2009
  • A new indexing methodology so called KTH-index was developed to quantitatively evaluate a potential level for tunnel collapse hazard, which has been successfully applied to tunnel construction sites to date. In this study, an attempt is made to apply this methodology for validating an outcome of tunnel design by checking the variation of KTH-index along longitudinal tunnel section. In this KTH-index simulation, it is the most important to determine the input factors reasonably. The design factor and construction condition are set up based on the designed outcome. Uncertain ground conditions are arranged based on borehole test and electro-resistivity survey data. Two scenarios for ground conditions, best and worst scenarios, are set up. From this simulation, it is shown that this methodology could be successfully applied for providing quantitative validity of a tunnel design and also potential hazard factors which should be carefully monitored in construction stage. The hazard factors would affect sensitively the hazard level of the tunnel site under consideration.

Prediction of Long-term Behavior of Tunnel in the Presence of Geological Anomalies (지질이상대가 존재하는 구간에서의 터널의 장기거동 예측)

  • Hoki Ban;Heesu Kim;Jungkuk Kim;Donggyou Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.8
    • /
    • pp.13-20
    • /
    • 2023
  • Tunnelling through the geological anomalies has widely known to have many difficulties such as bottom heave, crack of lining, squeezing and so on. To stabilize the tunnel during the construction or after construction, various reinforcing methods have been introduced and applied such as micropiling at the bottom of tunnel to prevent the bottom heave. In this study, long-term behavior of tunnel in the presence of geological anomalies was predicted using numerical analyses. To this end, material properties for swelling rock model capable of representing the rock swelling behavior was obtained using matching process with measured data to validate the adopted model. After the model validation, simulations were performed to predict the long-term behavior of tunnel in the geological anomalies.

Recovery Executions of Collapsed Face in Weak Zone (저토피 연약대 터널막장 붕락에 대한 갱내 보강사례)

  • Lee, Hong-Sung;Woo, Sang-Baik;Choi, Byung-Kil;Park, Kyung-Wook
    • 기술발표회
    • /
    • s.2006
    • /
    • pp.331-341
    • /
    • 2006
  • 터널 설계시 일반적으로 지반조사와 물리탐사를 시행하여 지층에 따른 적절한 터널 지보패턴을 설정하고 있으나, 다양한 지반 및 지질특성과 설계단계에서 미쳐 발견되지 못한 단층등의 연약대로 인하여 시공시 터널내에서 종종 붕락사고가 발생하고 있다. 터널 굴착시 발생하는 붕락은 터널의 안정성 저하 및 공기 지연 등의 큰 문제점들을 발생시키므로 조기에 적절한 보강방안이 요구된다. 본 논문에서는 터널 굴착시 발생한 두개의 붕락사고에 대해서 붕락원인과 붕괴유형을 파악하고 현장 여건에 맞는 신속한 보강대책을 제시하고 시공한 보강사례이다. 향 후 본 사례와 유사한 터널붕락사고가 발생할 경우 보강설계 및 보강방안을 계획.수립하는데 유용한 참고자료가 될 것이다.

  • PDF