• Title/Summary/Keyword: 터널배수시스템

Search Result 40, Processing Time 0.019 seconds

Evaluation of Drain Capacity in Tunnel Drainage System using Drainboard (바닥배수판을 이용한 터널 배수시스템의 통수능 평가)

  • Bae, Gyu-Jin;Lee, Gyu-Phil;Lee, Sung-Won;Shin, Hyu-Soung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.1
    • /
    • pp.13-20
    • /
    • 2006
  • This study proposes a new concept of a tunnel central drainage system by using a drain board to make a breakthrough on difficulties in the installation of conventional drainage system and draw-down of its drain capacity especially in long tunnels. A fundamental study has been performed for evaluation of the drain capacity of the planar drainage system adopted in this study. In fact, the system proposed makes possible to omit the side, transverse as well as central drainage pipes required in the conventional system, even if its drain capacity and any guideline for design are not available to date. In this circumstance, it is carried out to investigate the correlation between drain capacities and, shapes and posit ions of the columns of the drain board in terms of a variety of water inflows through hydrological model tests. It is shown from the tests that a drain capacity is highly influenced by the shape and the distance between the columns of a drain board in flowing direction, and a round rectangular shape of the columns leads to the highest capacity of drainage. And also, the shorter distance between the columns in flowing direction, the higher drain capacity would be achieved.

  • PDF

Variation of Manning's Coefficient due to Interval of Multi-Piers in Tunnel (터널내 다열기둥의 배치간격에 따른 Manning계수의 변화)

  • Yoon, Sung-Bum;Kwon, Kab-Keun;Lee, Sang-Min;Kim, Hyung-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.542-545
    • /
    • 2007
  • 터널의 노면 양쪽에 관로를 설치하여 유입된 지하수를 배출시키는 방법은 일반적인 터널 배수공법이지만 배수관로의 설치를 위한 추가적인 굴착은 공사기간과 공사비의 상승으로 이어지는 실정이다. 이에 터널 내에 별도의 배수관로 굴착 없이 노면 하부에 다열기둥을 일정 간격으로 매설하여 지하수의 흐름방향을 노면 하부로 유도시키는 경제적인 배수시스템이 현재 연구 중이다. 이 터널배수시스템은 추가적 굴착이 없어 기존의 배수시스템보다 경제적이지만 다열기둥의 연속적인 배치를 필요로 하므로 기존의 관로배수방식보다 더 많은 유체의 흐름저항을 받게 된다. 따라서 유체의 흐름에 효율적인 다열기둥 간의 배치간격에 대한 연구가 필요하다. 그래서 본 연구에서는 노면 하부에 다열기둥이 매설된 터널 내로 유입하는 지하수 배출을 목적으로 다열기둥 간의 배치간격에 따른 Manning계수의 변화를 수리실험을 통해 측정 분석하였다. 특히 Manning계수는 개수로에서 유체흐름 저항의 정도를 파악하는 데 이용되는 인자로 이를 활용하여 지하수 배수에 적절한 다열기둥 배치간격을 산정하였다. 본 연구를 통해 얻어진 수리실험 자료는 노면하부에 다열기둥을 매설하는 터널공사의 실제 설계를 위한 기초적인 참고자료로 사용될 것으로 기대된다.

  • PDF

New Horizontal Pre-Drainage System in Subsea Tunnelling (수평시추 방식에 의한 해저터널 시공중의 막장 수압경감)

  • Hong, Eun-Soo;Shin, Hee-Soon;Park, Chan;Kim, Hyung-Mok;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.18 no.1
    • /
    • pp.10-19
    • /
    • 2008
  • Most of flooding cases in tunnels are associated with huge inrushes of water due to the fracture zone with very high water head. To find out the causes and countermeasures for flooding cases, a dozen of tunneling cases are studied. Case studies presented here show that if the flooding had been forecasted and pre-drained prior to the tunnel excavation, such accidents could have been prevented. From this observation, we suggest a new horizontal drainage system with pre-investigation and pre-drainage concept. Seepage analyses are performed to analyze the water head reduction effect on the tunnel face by drainage pipes during the construction of subsea tunnels. Drainage system analyses are performed to analyze performance of the drainage system. These analysis results show that the suggested horizontal pre-drainage system provides a clear drainage and water head reducing effect. Finally, the proposed system can be a new alternative to the present water controlling methods applied to subsea tunnels.

Long-term performance of drainage system for leakage treatment of tunnel operating in cold region (한랭지역에서 운영 중인 터널의 누수처리를 위한 유도배수시스템의 장기 성능 평가)

  • Kim, Dong-Gyou
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1177-1192
    • /
    • 2018
  • The objective of this study is to develop the existing drainage system for catching the partial leakage of tunnel structures operating in cold region. The drainage system consists of drainage board, Hotty-gel as a waterproofing material, cover for preventing protrusion of Hotty-gel, air nailer, fixed nail, pipe for collecting ground leak, pipe for conveying ground leak, wire-mesh, and sprayed cement mortar. The drainage systems were installed in conventional concrete lining tunnels to evaluate the site applicability and constructability. The performances of waterproof and the drainage in the drainage system were evaluated by injecting 1,000 ml of red water in the back of the drainage system at 7 days, 14 days, 21 days, 28 days, 2 months, 3 months, 4 months, 5 months, 6 months, 7 months and 8 months. During 8 months of field test, the average daily temperature of the tunnel site was measured from $-16.0^{\circ}C$ to $25.6^{\circ}C$. The daily minimum temperature was $-21.3^{\circ}C$ and the daily maximum temperature was $30.8^{\circ}C$. There was no problem in waterproof and drainage performance of the drainage board in the drainage system. However, the pipe for conveying ground leak had the leakage problem from 14 days. It is considered that the leakage of the pipe for conveying ground leak was caused by the deformation of the pipe of the flexible plastic material having a thickness of 0.2 cm by using the high pressure air nailer and the fixing pin and the insufficient thickness and width of the hotty-gel for preventing the leakage.

A study for application plan of rational residual water pressure on the tunnel linings (터널 라이닝에 작용하는 합리적인 잔류수압 적용방안 검토)

  • Jung, Kuk-Young;Kim, Ji-Yeop;Kim, Ji-Hun;Moon, Hoon-Ki
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.6
    • /
    • pp.463-499
    • /
    • 2011
  • Control of ground water is one of the most important factors for long-term operation of tunnel because most tunnels are located under the ground water level. In case of a drainage tunnel, there is no pore water pressure on the lining when the drainage system is properly working. After long-term operation, however, residual pore water pressure can be developed on the lining due to the deterioration of the drainage system. In this study, the water pressure distribution under obstruction condition of drainage material and conduit on the tunnel is numerically investigated using the ICFEP program and compared with the current value being applied to the residual water pressure for rational application plan of residual water pressure on the tunnel linings.

A study on drainage system of the room-and-pillar underground structure considering groundwater conditions (지하수 유출수 조건을 고려한 주방식 지하구조의 배수시스템 연구)

  • Lee, Chulho;Hyun, Younghwan;Hwang, Jedon;Chang, Soo-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.6
    • /
    • pp.675-683
    • /
    • 2015
  • The room-and-pillar construction method for underground space is adopted from the room-and-pillar mining method which is one of the most popular underground mining method in the world. Drainage system in the room-and-pillar underground construction method can be similar with the concept of single shell in tunnel because additional reinforcement except the TSL (thin spray-on liner) is not applied in the room-and-pillar construction method. That is, to decrease groundwater level and maintain safety in tunnel, the drainage pin hole inside lining (shotcrete) can be used. However, if total amount of outflow in the underground structure is relatively small or groundwater is not detected, such drainage system will not be useful and cause additional construction cost. In this study, outflow of conventional tunnels in South Korea was investigated and the criteria to determine whether the drainage pin hole is effective was suggested. And the guided drainage system was suggested when drainage pin hole was not applied in the room-and-pillar construction method.

A Study on leakage monitoring of tunnel linings using the electric resistivity survey (전기비저항탐사를 이용한 터널라이닝 누수조사 연구)

  • Shin, Jong-Ho;Shin, Yong-Seok;Yoon, Jong-Ryeol;Kim, Ho-Jong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.3
    • /
    • pp.257-267
    • /
    • 2008
  • Tunnels acting as drains involve groundwater-related problems such as deterioration of drainage systems or leakage through the linings. Generally initial and minor leakage problems can not be recognized by naked eyes. When the leakage over the linings is noticed, damages to structures and facilities have already occurred and could be considerable. Therefore it is vital to recognize initial leakage as early as possible and provide appropriate measures. Detection of leakage under operation requires installing piezometer. However, that may cause destruction of water proofing sheet which is generally not allowed. In this study electric resistivity method, one of the geophysical surveys, was adopted to detect possible leakage through tunnel linings. Physical lining models were made in the laboratory. The electric response was monitored for varying hydraulic conditions. It is shown that the method is very useful to detect initial leakage and monitor the malfunction of drainage system. Furthermore the method can also be used to check the quality of any repairing works of linings.

  • PDF

Drainage system for leakage treatment of cement concrete structure in underground (콘크리트 지하구조물 누수 처리를 위한 유도배수시스템)

  • Kim, Dong-Gyou
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.4
    • /
    • pp.573-585
    • /
    • 2019
  • The objective of this study is to propose the drainage system that has been improved the workability, waterproofing and drainage performance to treat the leakage from the cement concrete structures in underground. It is improved that the pipe for conveying ground leak in the existing drainage system had the problem in workability and waterproof. The drainage systems with the improved pipe for conveying ground leak were constructed in conventional concrete lining tunnels to evaluate the workability, waterproofing and drainage. The waterproof and the drainage performance of the drainage system was evaluated by injecting 1,000 ml of red water in the back of the drainage system at 3 weeks, 6 weeks, 9 weeks, 11 weeks, 14 weeks, 17 weeks and 23 weeks. During 6 months of field performance test, the average daily temperature of the tunnel site was measured from $-12.4^{\circ}C$ to $19.7^{\circ}C$. The daily minimum temperature was $-17.2^{\circ}C$ and the daily maximum temperature was $26.7^{\circ}C$. There was no problem in waterproof and drainage performance on the pipe for conveying ground leak and the drainage system during 6 months for field performance test. It is concluded that the improved drainage system can be applied to various cement concrete underground structures where leakage occurs, and has little seasonal effect.

An Experimental Study on the Effect of Malfunctioning of Drainage System on NATM Tunnel Linings (NATM 터널의 배수시스템 수리기능저하가 터널 라이닝에 미치는 영향)

  • Shin, Jong-Ho;Kwon, Oh-Yeob;Shin, Yong-Suk;Yang, Yu-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.6
    • /
    • pp.77-84
    • /
    • 2007
  • One of the most sensitive design specifications to be considered is infiltration and external pore-water pressures on underground structure construction. Development of pore-water pressure may accelerate leakage and consequently cause deterioration of the lining. In this paper, the development of pore-water pressure due to malfunctioning of drainage system and its potential effect on the linings are investigated using physical model tests. The deterioration procedure was simulated by controlling both permeability and flow rate. Development of pore-water pressure was monitored on the lining using pore pressure measurement cells. Test results identified the mechanism of pore-water pressure development on the tunnel lining. In addition, they showed that controlling flow rate is more effective method fur simulating deterioration procedure than permeability control. The laboratory model tests were reproduced using coupled numerical method, and showed that the effect of deterioration of drainage system can be theoretically expected using coupled numerical modeling method.

Evaluation of pore water pressure on the lining during tunnel operation (운영 중 터널에 작용하는 간극수압 평가기법)

  • Shin, Jong-Ho;Shin, Yong-Suk;Choi, Kyu-Cheol
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.4
    • /
    • pp.361-369
    • /
    • 2008
  • Control of ground water is one of the most important factors for long-term operation of tunnel because most of tunnel is located in the ground. In case of leakage tunnel, there is no pore water pressure on the lining when the drainage system is properly working. After long-term operation, however, the pore water pressure can be developed on the lining due to the deterioration of the drainage system. The increased pore water pressure on the lining is termed here as 'residual pore water pressure'. Residual pore water pressure can be measured by piezometer, but it is generally not allowed because of damages of drainage system. Therefore, an indirect and nondestructive method is required for evaluating the residual pore water pressure. Moreover, understanding of pore water pressure is needed during healthy operation of the lining. In this study, a new method for evaluation of pore water pressure on the lining during operation is proposed using theoretical and numerical analysis. It is shown that the method is particularly useful for stability investigation of pore water pressure on the lining during operation using theoretical analysis with normalized pore water pressure curve.

  • PDF