• Title/Summary/Keyword: 터널단면

Search Result 385, Processing Time 0.026 seconds

The Estimate of Air Content in the Reservoir Water intake Facilities (저수지 취수시설 공기관 내 공기량 산정식에 관한 고찰)

  • Yun, Dong-Koun;Jo, Jin-Hoon;Kim, Jin-Taek;Han, Guk-Heon;Lee, Seung-Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.174-174
    • /
    • 2012
  • 최근 농업용저수지의 경우 기상이변에 따른 수위조절을 위하여 다량의 수문을 일시에 개방하는 사례가 지역적으로 증가하고 있는 추세이다. 그에 따라 당초 목적인 농업용수를 위한 취수시설이 최근 홍수조절용으로 활용됨에 따른 취수시설 내 공동현상이 발생하고 있다. 이러한 공동현상으로 인해 수시설물의 안정성에 문제가 발생하고 그에 따른 2차 재해위험이 있을 수 있다. 따라서 본 연구에서는 공동현상 방지를 위해 취수시설 공기관 설계기준에 대하여 고찰하였다. 공동현상을 방지하고 홍수량을 적절하게 배제하기 위해서 유입되는 공기량산정식이 필요하다. 공기관 단면결정은 농업생산기반정비사업 설계기준(필댐)의 구조설계 부분에 정리되어 있지만 이는 이수측면에서 설계 및 시공이 진행됨에 따라서 취수에 대한 목적을 달성하기에는 어려움이 있다. 따라서 취수시설의 기능과 역할을 증대시키고자 취수시설 적정 공기관 설계를 분석하여 향후 신규, 개보수 및 현장 유지관리에 활용하기 위한 기초자료를 제시하였다. 이러한 공동현상 및 공기관 설계를 위하여 현장조사, 수치해석, 수리모형시험을 병행하여 문석하였다. 그 결과 취수탑의 형상변수와 수위에 대한 수치해석을 수행하여 변수가 소요공기량에 미치는 영향은 조절게이트 개폐율을 증가시킬수록 소요공기량이 증가하며, 약 80%의 개폐율에서 소요공기량이 최대가 되었다. 방수로 직경이 증가하면, 공기관 입구와 끝단의 압력차가 감소하여 소요공기량이 감소하고, 수위가 증가하면 소요공기량이 증가하는 것으로 분석되었다. 따라서 공동현상 방지를 위해 공기량 산정식은 취수터널에 연직수문이 설치되어 있는 6가지 흐름의 형태에 따라서 $/Q_w=0.04(F-1)^{0.85}$, $Q_a/Q_w=K(F-1)$, $Q_a/Q_w=0.014(F-1)^{1.4}$, $Q_a/Q_w=0.015(F-1)^{1.4}$의 관계식 중 적정한 것을 사용하여야 할 것으로 판단되며, 또한 공기관에 유입부의 허용부압은 수두로부터 1.0m이하로 하고, 공기관 내 풍속은 $45^m/s$를 기준으로 최대 $90^m/s$로 하여야 할 것으로 판단된다.

  • PDF

Effect of Trigger Finger on Pain, Grip Strength and Function of Upper Limb of Patients with Carpal Tunnel Syndrome: A Cross-sectional Study (방아쇠수지가 손목터널증후군 환자의 악력, 통증 및 상지기능에 미치는 영향: 단면적 연구)

  • Kim, Myoung-Kwon;Yun, Da-Eun
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.16 no.1
    • /
    • pp.63-71
    • /
    • 2021
  • PURPOSE: The purpose of this study was to investigate the effects of trigger finger on pain, muscle strength and function in carpal tunnel syndrome (CTS) patients. METHODS: A total of 60 subjects (30 carpal tunnel syndrome with trigger finger and 30 carpal tunnel syndrome without trigger finger) were assessment for pain, muscle strength (power grip, key pinch , tip to tip pinch, three jaw pinch) and function. The effect sizes of the two groups were compared, and the correlation between the trigger finger and each variable was analyzed. RESULTS: The results showed that there were significantly difference in the pain, muscle strength excluding three jaw pinch and function (p < .05). The results also showed correlation between trigger finger and pain (r = .552), muscle strength excluding three jaw pinch (power grip r = -.296, key pinch r = -.260, tip to tip pinch r = -.285), and function (r = .375). The function of carpal tunnel syndrome patients was related to pain (r = .550) and power grips (r = -.324) of muscle strength. CONCLUSION: In carpal tunnel syndrome patients with trigger finger compared to carpal tunnel syndrome, muscle weakness, pain increase, and function reduction were shown. In addition, trigger finger are correlated with muscle strength, pain and function, and muscle weakness and increased pain affect the daily living of carpal tunnel syndrome patients with triggers finger. Therefore, physical therapy interventions of carpal tunnel syndrome patients with trigger finger should be combined with treatment for muscle strength enhancement as well as pain reduction.

Earth Pressure Equation Acting on the Cylindrical Diaphragm Wall in a Shaft (원형수직구에 설치된 강성벽체에 작용하는 토압산정방법)

  • Kong, Jin-Young;Shin, Young-Wan;Hwang, Yi-Sung;Chun, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.1
    • /
    • pp.21-29
    • /
    • 2009
  • On plane strain condition, many researchers have investigated the earth pressure according to the shape of wall, and standardized method has been applied to the design of the retaining wall. But on cylindrical diaphragm wall, at-rest earth pressure has been generally used. Even though this method is on conservative side, it may lead to over-design. In this paper, the application of convergence confinement method to the calculation of the earth pressure acting on the cylindrical diaphragm wall of a shaft was suggested. In addition, a model test was carried out to investigate the distributions of earth pressure. Model test results show that the earth pressures of diaphragm wall are about 1.4 times larger than active earth pressure and about 0.8 times less than at-rest earth pressure.

An Experimental Study on Dynamic Behavior Evaluation of Transitional Track (접속부 궤도의 동적거동분석을 위한 실험적 연구)

  • Cho, Sung-Jung;Choi, Jung-Youl;Chun, Dae-Sung;Kim, Man-Cheol;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1379-1385
    • /
    • 2007
  • In domestic transitional zone design, there is regulation to prevent generation of irregular substructure behaviors that negatively influence in prevention of plasticity settlement on approach section and contact section as well as relieve overall track rigidity by reducing sectional foundation and track stiffness difference, but design guideline that considers dynamic behavior of transitional track in actual service line is very insignificant. Therefore in this study, characteristics of transitional track dynamic behaviors by substructure stiffness are researched and measured dynamic response of transitional track by substructure stiffness in order to prove correlation between substructure and track and calculate elasticity(stiffness) and track load of transitional track by using measurement and formula to provide basic information for developing design guideline considering dynamic behavior of service line transitional track.

  • PDF

A study on performance evaluation of fiber reinforced concrete using PET fiber reinforcement (PET 섬유 보강재를 사용한 섬유 보강 콘크리트의 성능 평가에 관한 연구)

  • Ri-On Oh;Yong-Sun Ryu;Chan-Gi Park;Sung-Ki Park
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.4
    • /
    • pp.261-283
    • /
    • 2023
  • This study aimed to review the performance stability of PET (Polyethylene terephthalate) fiber reinforcing materials among the synthetic fiber types for which the application of performance reinforcing materials to fiber-reinforced concrete is being reviewed by examining short-term and long-term performance changes. To this end, the residual performance was analyzed after exposing the PET fiber to an acid/alkali environment, and the flexural strength and equivalent flexural strength of the PET fiber-reinforced concrete mixture by age were analyzed, and the surface of the PET fiber collected from the concrete specimen was examined using a scanning microscope (SEM). The changes in were analyzed. As a result of the acid/alkali environment exposure test of PET fiber, the strength retention rate was 83.4~96.4% in acidic environment and 42.4~97.9% in alkaline environment. It was confirmed that the strength retention rate of the fiber itself significantly decreased when exposed to high-temperature strong alkali conditions, and the strength retention rate increased in the finished yarn coated with epoxy. In the test results of the flexural strength and equivalent flexural strength of the PET fiber-reinforced concrete mixture, no reduction in flexural strength was found, and the equivalent flexural strength result also did not show any degradation in performance as a fiber reinforcement. Even in the SEM analysis results, no surface damage or cross-sectional change of the PET reinforcing fibers was observed. These results mean that no damage or cross-section reduction of PET reinforcing fibers occurs in cement concrete environments even when fiber-reinforced concrete is exposed to high temperatures in the early stage or depending on age, and the strength of PET fibers decreases in cement concrete environments. The impact is judged to be of no concern. As the flexural strength and equivalent flexural strength according to age were also stably expressed, it could be seen that performance degradation due to hydrolysis, which is a concern due to the use of PET fiber reinforcing materials, did not occur, and it was confirmed that stable residual strength retention characteristics were exhibited.

Development of Empirical Fragility Function for High-speed Railway System Using 2004 Niigata Earthquake Case History (2004 니가타 지진 사례 분석을 통한 고속철도 시스템의 지진 취약도 곡선 개발)

  • Yang, Seunghoon;Kwak, Dongyoup
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.11
    • /
    • pp.111-119
    • /
    • 2019
  • The high-speed railway system is mainly composed of tunnel, bridge, and viaduct to meet the straightness needed for keeping the high speed up to 400 km/s. Seismic fragility for the high-speed railway infrastructure can be assessed as two ways: one way is studying each element of infrastructure analytically or numerically, but it requires lots of research efforts due to wide range of railway system. On the other hand, empirical method can be used to access the fragility of an entire system efficiently, which requires case history data. In this study, we collect the 2004 MW 6.6 Niigata earthquake case history data to develop empirical seismic fragility function for a railway system. Five types of intensity measures (IMs) and damage levels are assigned to all segments of target system for which the unit length is 200 m. From statistical analysis, probability of exceedance for a certain damage level (DL) is calculated as a function of IM. For those probability data points, log-normal CDF is fitted using MLE method, which forms fragility function for each damage level of exceedance. Evaluating fragility functions calculated, we observe that T=3.0 spectral acceleration (SAT3.0) is superior to other IMs, which has lower standard deviation of log-normal CDF and low error of the fit. This indicates that long-period ground motion has more impacts on railway infrastructure system such as tunnel and bridge. It is observed that when SAT3.0 = 0.1 g, P(DL>1) = 2%, and SAT3.0 = 0.2 g, P(DL>1) = 23.9%.

A Study on Development of Prototype Test Train Design in G7 Project for High Speed Railway Technology (G7 고속전철기술개발사업에서의 시제차량 통합 디자인 개발)

  • 정경렬;이병종;윤세균
    • Archives of design research
    • /
    • v.16 no.4
    • /
    • pp.185-196
    • /
    • 2003
  • The demand for an environment-friendly transportation system, equipped with low energy consumption, and low-or zero-pollution has been on the increase since the beginning of the World Trade Organization era. Simultaneously, the consistent growth of high-speed tram technology, combined with market share, has sparked a fierce competition among technologically-advanced countries like France, Germany, and Japan in an effort to keep the lead in high-speed train technology via extensive Research and development(R&D) expenses. These countries are leaders in the race to implement the next-generation transportation system, build intercontinental rail way networks and export the high-speed train as a major industry commodity. The need to develop our own(Korean) 'high-speed train' technology and its core system technology layouts including original technology serves a few objectives: They boost the national competitive edge; they develop an environmental friendly rail road system that can cope with globalization and minimize the social and economic losses created by the growing traffic-congested delivery costs, environment pollution, and public discomforts. In turn, the 'G7 Project-Development of High Speed Railway Technology' held between 1996 and 2002 for a six-year period was focused on designing a domestic train capable of traveling at a speed of 350km/h combined and led to the actual implementation of engineering and producing the '2000 high-speed train:' This paper summarizes and introduces one of the G7 Projects-specifically, the design segment achievement within the development of train system engineering technology. It is true that the design aspect of the Korean domestic railway system program as a whole was lacking when compared with the advanced railroad countries whose early phase of train design emphasized the design aspect. However, having allowed the active participation of expert designers in the early phase of train design in the current project has led to a new era of domestic train development and the implementation of a way to meet demand flexibly with newly designed trains. The idea of a high-speed train in Korea and its design concept is well-conceived: a faster, more pleasant, and silent based Korean high-speed train that facilitates a new travel culture. A Korean-type of high-speed train is acknowledged by passengers who travel in such trains. The Korean high-speed prototype train has been born, combining aerodynamic air-cushioned design, which is the embodiment of Korean original design of forehead of power car minimized aerodynamic resistance using a curved car body profile, and the improvement of the interior design with ergonomics and the accommodation of the vestibule area through the study of passenger behavior and social culture that is based on the general passenger car.

  • PDF

Development of Discontinuity Orientation Measurement (DOM) Drilling System and Core Joint Analysis Model (Discontinuity Orientation Measurement (DOM) 시추장비 및 코어절리 해석모델 개발)

  • 조태진;유병옥;원경식
    • Tunnel and Underground Space
    • /
    • v.13 no.1
    • /
    • pp.33-43
    • /
    • 2003
  • Field investigations of the orientations of discontinuity planes inside the borehole for designing the underground rock structures have been depend solely on the borehole image-taking techniques. But, borehole image-taking has to be processed after the completion of drilling operation and also requires the handling of highly expensive apparatus so that practical application is very restricted. In this study Discontinuity Orientation Measurement (DOM) drilling system and discontinuity analysis model RoSA-DOM are developed to acquire the reliable information of rock structure by analyzing the characteristics of joint distribution. DOM drilling system retrieves the rock core on which the reference line of pre-fixed drilling orientation is engraved. Coordinates of three arbitrary points on the joint surface relative to the position of reference line are assessed to determine the orientation of joint plane. The position of joint plane is also allocated by calculating the location of core axis at which joint plane is intersected. Then, the formation of joint set is analyzed by utilizing the clustering algorithm. Total and set spacings are calculated by considering the borehole axis as the scanline. Engineering applicability of in-situ rock mass around the borehole is also estimated by calculating the total and regional RQDs along the borehole axis.

Experimental and Numerical Studies on Application of Industrial Explosives to Explosive Welding, Explosive Forming, Shock Powder Consolidation (산업용 폭약을 이용한 폭발용접, 폭발성형과 충격분말고화에 관한 실험 및 수치해석적 연구)

  • Kim, Young-Kook;Kang, Seong-Seung;Cho, Sang-Ho
    • Tunnel and Underground Space
    • /
    • v.22 no.1
    • /
    • pp.69-76
    • /
    • 2012
  • Theoretical backgrounds on the experimental methods of explosive welding, explosive forming and shock consolidation of powders are introduced. Explosive welding experiments of titanium (Ti) and stainless steel (SUS 304) plate were carried out. It was revealed that a series of waves of metal jet are generated in the contact surface between both materials; and that the optimal collision velocity and collision angle is about 2,100~2,800 m/s and $15{\sim}20^{\circ}$, respectively. Also, explosive forming experiments of Al plate were performed and compared to a conventional press forming method. The results confirmed that the shock-loaded Al plate has a larger curvature deformation than those made using conventional press forming. For shock consolidation of powders, the propagation behaviors of a detonation wave and underwater shock wave generated by explosion of an explosive are investigated by means of numerical calculation. The results revealed that the generation and convergence of reflected waves occur at the wall and center position of water column, and also the peak pressure of the converged reflected waves was 20 GPa which exceeds the detonation pressure. As results from the consolidation experiments of metal/ceramic powders ($Fe_{11.2}La_2O_3Co_{0.7}Si_{1.1}$), shock-consolidated $Fe_{11.2}La_2O_3Co_{0.7}Si_{1.1}$ bulk without cracks was successfully obtained by adapting the suggested water container and strong bonding between powder particles was confirmed through microscopic observations.

Numerical Study on Vertical Stress Estimation for Panel Pillars at Room and Pillar Mines (주방식 광산의 패널 광주 수직응력 추정을 위한 수치해석 연구)

  • Yoon, Dong-Ho;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.30 no.5
    • /
    • pp.473-483
    • /
    • 2020
  • This paper examines the vertical stress change concentrated on mine pillar which occurs due to the stress disturbance from opening excavation at room and pillar mine by FLAC3D, a finite difference method (FDM) software. The mesh size combination is decided with a careful consideration of relative error and run-time, then its performance is verified. A series of numerical analyses is conducted and the vertical stress at central pillar was observed for the test cases of 1×1 to 11×11 mine pillars, 40 m to 320 m depth with 40 m difference. The results show that the vertical stress of pillar approaches to the similar value with the value estimated by tributary area theory(TAT) when the development area (NP) is increased or the height of overburden (HOB) is decreased, while it is overestimated in the opposite case. Furthermore, it also represents that the vertical stress factor (VSF) converges to a specific value when the depth is increased whille keeping the development area identical.