• Title/Summary/Keyword: 터널단면

Search Result 385, Processing Time 0.025 seconds

Numerical Analysis of the Effects of Stress Anisotropy and Tunnel Excavation Shape on Initial Elastic-wall Displacement (지반응력의 비등방성에 따른 터널측벽의 초기탄성변위 특성에 대한 수치해석적 연구)

  • 김상환;정혁일
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.6
    • /
    • pp.33-42
    • /
    • 2002
  • Ground reaction curve is a very important information for evaluating the side wall displacements and installation time of the tunnle support. The ground reaction curve can be estimated by analytical closed form solutions derived on the supposition of circular section and isotropic stress condition. The conditions of stress field and tunnel configurations, however, are quite different in practice. Therefore, it is necessary to investigate the effects of stress anisotropy and tunnel configurations in order to use simply in practical design. This paper describes a study of influence factors in the ground reaction curve. In order to evaluate the applicability of analytical closed form solution in practical design, two sets of parametric studies were carried out by numerical analysis in elastic tunnel behaviour: one set of studies investigated the influence of the K and the other set investigated the influence of the tunnel configurations such as circular and horse-shoe shape. In the studies, K value varies between 0.5 and 3.0, initial ground vertical stress varies between 5~30MPa far each K values. The results indicated that the self-supportability of ground is larger in the ground having lower K value. However, it is suggested that the applicability of closed form solution may not be adequate to determine directly the installation time of the support and self-supportability of ground. It is necessary to consider stress anisotropy and tunnel configurations.

A study on the effect of air velocity through a damper on smoke extraction performance in case of fire in road tunnels (도로터널 화재 시 집중배기방식의 배기포트 통과풍속이 배연성능에 미치는 영향에 관한 연구)

  • Ryu, Ji-Oh;Na, Kwang-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.4
    • /
    • pp.347-365
    • /
    • 2020
  • In order to resolve traffic problems in urban areas and to increase the area of green spaces, tunnels in downtown areas are being increased. Additionally, the application of large port smoke extraction ventilation systems is increasing as a countermeasure to smoke extraction ventilation for tunnels with high potential for traffic congestion. It is known that the smoke extraction performance of the large port smoke extraction system is influenced not only by the amount of the extraction flow rate, but also by various factors such as the shape of the extraction port (damper) and the extraction air velocity through a damper. Therefore, in this study, the design standards and installation status of each country were investigated. When the extraction air flow rate was the same, the smoke extraction performance according to the size of the damper was numerically simulated in terms of smoke propagation distance, compared and evaluated, and the following results were obtained. As the cross-sectional area of the smoke damper increases, the extraction flow rate is concentrated in the damper close to the extraction fan, and the smoke extraction rate of the damper in downstream decreases, thereby increasing the smoke propagation distance on the downstream side. In order to prevent such a phenomenon, it is necessary to reduce the cross-sectional area of the smoke damper and increase the velocity of passing air through the damper so that the pressure loss passing through the damper increases, thereby reducing the non-uniformity of smoke extraction flow rate in the extraction section. In this analysis, it was found that when the interval distance of the extraction damper was 50 m, the air velocity passing through damper was 4.4 m/s or more, and when the interval distance of the extraction dampers was 100 m, the air velocity passing through damper was greater than 4.84 m/s, it was found to be advantageous to ensure smoke extraction performance.

The Analysis of Tunnel Excavation using Finite Difference Method (유한 차분법을 이용한 터널 단면 해석)

  • 김동후;유건선
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.166-178
    • /
    • 1991
  • Using FLAC, which is an explicit finite difference code written for analysis of problems in geotechnical engineering, a particular example 2 in the Korean Geothechnical Society News has been analysed. The elastoplasticity formulation in FLAC assumes an elastic, perfectly plastic solid in plane strain which conforms to a Mohr-Coulomb yield condition. During tunnel excavations by stages, stresses and diaplacements in region around the tunnel varies according to distance from the face of tunnel and installation of tunnel supports, and soon. In this analysis, the three dimensional support effect of the rock mass during the process of excavation is simulated by using the stress distribution method, and varying the material constants of shotcrete in each stage also considered. The maximum convergency is occured at the crown of the tunnel and estimated to be about 12mm.

  • PDF

굴착 진행과정을 고려한 터널 단면의 점탄성 및 탄소성 응력해석

  • Lee, Yeon-Gyu;Jang, Hyeon-Gon;Lee, Jeong-In
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.152-165
    • /
    • 1991
  • Elasto-plastic and Visco-elastic sytress analyses were conducted for standard cross-section of subway tunnel in Seoul . Considering the procedure of excavation and reinforcement, excavated region was divided to multiple elements. And the progress of tunnel is simulated to be the removal of a series of layerd elements by means of diminishing the stiffness of the portion progressively. Another method is to be free of stress due to excavation instead of stiffness. In the analysis multiple element method was conducted with ADINA program, the stiffness removal method was adopted . For the same model, stress release method was carried out with Visco-Elastic Analysis program developed in Rock mechanics laboratory, Seoul National University(SNU-VBA) . When upper tunnel excavated, displacements in roof were same for two results, but when bottom tunnel removed completely , displacement changes of rock in the stress release method exhibited very small amount compared with stiffness removal method.

  • PDF

Characteristics of Cavitation Noise on High-Speed Propellers (고속 프로펠러의 캐비테이션 소음 특성)

  • I.H. Song;J.W. Ahn;K.S. Kim;I.S. Moon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.2
    • /
    • pp.22-29
    • /
    • 2000
  • The cavitation noised of high-speed propellers was experimentally studied in KRISO cavitation tunnel. In this paper, a series of cavitation noise tests were carried out for five propellers with various sections and loading distributions. From the experimental results, the noise characteristics of various cavitation pattern and the noise performance of the propellers were analyzed. There can be used for optimum design for high-speed propellers.

  • PDF

저가 고효율 실리콘계 (protocrystalline Si/$\mu$c-Si:H) 적층형 박막 태양전지 개발

  • Im, Goeng-Su
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.191-202
    • /
    • 2005
  • 비정질 실리콘 태양전지 대신에 열화가 더 적은 프로터결정 실리콘(pc-Si:H)을 상층전지 흡수층으로 사용한 고효율 실리콘계 적층형(pc-Si:H/$\mu$c-Si:H) 박막 태양전지를 개발하였다. 우선, 높은 전도도와 넓은 에너지 밴드갭 특성을 갖는 p-a-SiC:H 박막을 개발하였고, p/i 계면의 특성 향상을 위해 p-nc-SiC:H 완충층을 개발하였다. 프로터결정 실리콘 다층막을 제작하고 FTIR, 평면 TEM, 단면 TEM 측정을 통해 프로터결정 실리콘 다층막의 우수한 열화 특성의 원인을 규명하였다. 적층형 태양전지의 성능향상을 위해 n-p-p 구조의 터널접합을 제안, 제작하고 특성을 분석하였으며, pc-Si:H/a-Si:H 적층형 태양전지에 적용하여 성능향상을 이루었다. 양질의 하층전지용 마이크로결정 실리콘 박막을 증착하기 위하여 광CVD법과 플라즈마CVD법을 결합한 2단계 마이크로결정 실리콘 증착법을 개발하였다.

  • PDF

Study on the Characteristics of the AlAS/GaAs Epitaxial Layers Grown by Molecular Beam Epitaxy (분자선에피택시성장법으로 성장한 AlAS/GaAs 에피택셜층의 특성)

  • No, Dong-Wan;Kim, Gyeong-Ok;Lee, Hae-Gwon
    • Korean Journal of Materials Research
    • /
    • v.7 no.12
    • /
    • pp.1041-1046
    • /
    • 1997
  • 본 연구에서는 분자선 에피택시 방법으로 비대칭 AIAs/GaAs(001)이중 장벽, 삼중장벽구조를 성장한 수 이를 이용하여 2단자 소자를 제작하여 전기적 특성을 분석하였다. 에피층은 쌍결정 X-ray회절 분석과 단면투과 전자현미경을 이용하여 결정성 및 격자 정합성을 확인하였다. 전기적 성능을 보다 향상시키기 위해 n-GaAs에 대한 오믹 접촉등의 소자 제작 공정을 최적화하였다. 삼중장벽 구조를 이용하여 제작한 소자의 전기적 특성 연구 결과 두개의 주요 공진 터널링 전류 피크 사이에 X-valley에 의한 구조를 확인할 수 있었으며, 이중 장벽구조에 제2의 양자우물 구조를 첨가함으로써 낮은 전압위치에서 전류 피크가 향상하는 결과를 얻었다.

  • PDF

Heat Flow Characteristics by Sectional Shapes in Underground Electric Power Tunnel (지하 전력구 단면 형상에 따른 터널내 열유동 특성)

  • Baek, Doo-San;Lee, Seung-Chul;Kwak, Dong-Kurl
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.13-14
    • /
    • 2015
  • This study has conducted a computational analysis to find out about characteristics of heat flow emitted from power lines when the sectional form of electric power tunnel that adopts forced ventilation is shaped like a rectangular, arch or horseshoe. The result of analysis shows that the temperature in the vicinity of the power line peaked at $70^{\circ}C$ when the sectional form is a rectangular, which indicates it is less affected by ventilation than the form of an arch or horseshoe.

  • PDF

Performance Evaluation of High Strength Lattice Girder by Structural Analyses and Field Measurements (구조해석과 현장계측에 의한 고강도 격자지보재의 성능 평가)

  • Lee, Jeo-Won;Min, Kyong-Nam;Jeong, Ji-Wook;Roh, Byoung-Kuk;Lee, Sang-Jin;Ahn, Tae-Bong;Kang, Seong-Seung
    • The Journal of Engineering Geology
    • /
    • v.30 no.3
    • /
    • pp.237-251
    • /
    • 2020
  • This study examined structural analysis of supports in tunnel and displacement and underground stress of tunnel by measurement, in order to evaluate the performance of high-strength lattice girders developed as a substitute for H-profiles. According to the three-dimensional nonlinear structural analysis results of the tunnel support, the load and displacement relationship between the H-profiles and the high-strength lattice girders showed almost the same behavior, and the maximum load of the high-strength lattice girders were 1.0 to 1.2 times greater than the H-profiles. By the results of the three-dimensional tunnel cross-section analysis of the supports, the axial force was occurred largely in the lower left and right sides of the tunnel, and showed a similar trend to the field test values. In the results of the measurement of the roof settlement and rod extension, the final displacement of the steel arch rib (H-profile) and high-strength lattice girder section in tunnel was converged to a constant value without significant difference within the first management standard of 23.5 mm. According to the results of underground displacement measurement, the final change amount of the two support sections showed a slight displacement change, but converged to a constant value within the first management standard of 10 mm. By the results of measurement of shotcrete stress and steel arch rib stress, the final change amount of the two support sections showed a slight stress change, but converged to a constant value within the first management standard of 81.1 kg/㎠ and 54.2 tonf.

Transmitted Noise Reduction Performance of Piezoelectric Single Panel through Piezo-damping (압전감쇠를 통한 압전단일패널의 전달 소음저감성능)

  • 이중근;김재환;김기선;이형식
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.2 no.2
    • /
    • pp.49-56
    • /
    • 2001
  • The possibility of a noise reduction of piezoelectric single Panels is experimentally studied. Piezoelectric single panel is basically a plate structure on which piezoelectric patch with shunt circuit is mounted. The use of piezoelectric shunt damping can reduce the transmission at resonance frequencies of the panel structure. Piezo-damping is implemented by using a newly proposed tuning method. This method is based on electrical impedance model and maximizing the dissipated energy at the shunt circuit. By measuring the electrical impedance at the piezoelectric patch bonded on a structure, an equivalent electrical model is constructed near the system resonance frequency. Resonant shunt circuit for piezoelectric shunt damping is composed of register and inductor in series, and they are determined by maximizing the dissipated energy throughout the circuit. The transmitted noise reduction performance of single Panel is tested on an acoustic tunnel. The tunnel is a tube with a square cross section and a loud speaker is mounted at one side of the tube as a sound source. Panels are mounted in the middle of the tunnel and the transmitted sound pressure across Panels is measured. By enabling the piezoelectric shunt damping noise reduction is achieved at the resonance frequencies as well. Piezoelectric single panel with piezoelectric shunt damping is a promising technology for noise reduction in a broadband frequency.

  • PDF