• Title/Summary/Keyword: 터널거동 수렴

Search Result 20, Processing Time 0.023 seconds

A Study on the Concrete Lining Behavior due to Tunnel Deterioration (터널 열화로 인한 콘크리트 라이닝의 거동에 관한 연구)

  • Han, Young-Chul;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.4
    • /
    • pp.21-34
    • /
    • 2014
  • This paper studies the time-dependent behaviors of tunnel and surrounding ground due to tunnel deterioration. In the first part, the literature on deterioration characteristics of tunnels was reviewed. In the second part, a numerical analysis was performed to investigate the behavior of concrete lining on the typical section of Korean high-speed rail tunnel (weathered rock) after determination of input variables related to deterioration impact. The result shows that the settlement at the crown of tunnel and surface ground increased up to 7.0% and 30.2% of the total settlements during construction stage, respectively, and the internal convergence reduction of 9.0 mm for concrete linings was generated within 30 years after completion of tunnel construction. Also the loosening height increased up to 2.55 times of tunnel height within 50 years, which is higher than that of Terzaghi's recommendation on ultimate state. Due to this process of extending zones, it is found that additional loads were applied to concrete lining with the axial stress about 3.20~3.66 MPa, which accelerates tunnel deterioration. Finally the quantitative design approach to evaluate time-dependent behavior of lining and surrounding ground due to tunnel deterioration was proposed.

Application of New Edge-to-Edge Contact Algorithm to Discontinuous Deformation Analysis (불연속 변형해석에서의 새로운 선-선 접촉 해석 적용)

  • Lee Chung-In;Moon Young-Sam;Choi Yong-Keun;Ahn Tae-Young
    • Tunnel and Underground Space
    • /
    • v.15 no.4 s.57
    • /
    • pp.305-315
    • /
    • 2005
  • DDA (Discontinuous Deformation Anlaysis) is one of the latest numerical analysis which has merits of both FEM and DEM. In this research a new edge-to-edge contact algorithm was applied on DDA. With adoption of new edge-to-edge contact state definition, sub-algorithm was improved about open-close iteration, contact state judge, contact detecting, and friction forces acting on joints. Newly applied DDA was verified based on two different cases. The DDA results show good agreement with numerically predicted one.

Analysis of the Stability and Behavior of a Calcareous Rock Slope During Construction of a Tunnel Entrance (터널출입구 시공에 따른 석회암 사면의 안정성 및 거동 분석)

  • Song, Young-Suk;Yun, Jung-Mann
    • The Journal of Engineering Geology
    • /
    • v.23 no.3
    • /
    • pp.283-292
    • /
    • 2013
  • A calcareous rock slope failed during excavation of the slope for construction of a tunnel entrance. The slope is located at the construction site for widening highway in Yeongwol, Korea. Field surveys, laboratory tests, and numerical analyses were performed to determine the reason for the slope failure. The numerical analysis revealed that the safety factor of the slope before construction of the entrance was less than 1, and that this decreased after construction. After construction of the entrance, the sliding zone of the slope increased and slope stability decreased because the shear strain and plastic zone in the slope over the tunnel entrance showed an increase relative to the lower part of the slope. To enhance the stability of the slope for construction of the tunnel entrance, countermeasures such as rock bolts, rock anchors, and FRP (Fiber glass Reinforced Plastic) grouting were adopted in light of the field conditions. Serial field monitoring performed to confirm the reinforcing effects of the adopted countermeasures revealed a small amount of horizontal deformation of the slope soils, most of the elastic deformation that can regain its former value. In addition, the axial forces of the rock bolt and anchor were more strongly affected by slope excavation during construction of the tunnel entrance than by tunnel excavation or the rainy season, and the axial forces tended to converge after excavation of the tunnel. Therefore, we can confirm that the slope is currently safe.

Performance Evaluation of High Strength Lattice Girder by Structural Analyses and Field Measurements (구조해석과 현장계측에 의한 고강도 격자지보재의 성능 평가)

  • Lee, Jeo-Won;Min, Kyong-Nam;Jeong, Ji-Wook;Roh, Byoung-Kuk;Lee, Sang-Jin;Ahn, Tae-Bong;Kang, Seong-Seung
    • The Journal of Engineering Geology
    • /
    • v.30 no.3
    • /
    • pp.237-251
    • /
    • 2020
  • This study examined structural analysis of supports in tunnel and displacement and underground stress of tunnel by measurement, in order to evaluate the performance of high-strength lattice girders developed as a substitute for H-profiles. According to the three-dimensional nonlinear structural analysis results of the tunnel support, the load and displacement relationship between the H-profiles and the high-strength lattice girders showed almost the same behavior, and the maximum load of the high-strength lattice girders were 1.0 to 1.2 times greater than the H-profiles. By the results of the three-dimensional tunnel cross-section analysis of the supports, the axial force was occurred largely in the lower left and right sides of the tunnel, and showed a similar trend to the field test values. In the results of the measurement of the roof settlement and rod extension, the final displacement of the steel arch rib (H-profile) and high-strength lattice girder section in tunnel was converged to a constant value without significant difference within the first management standard of 23.5 mm. According to the results of underground displacement measurement, the final change amount of the two support sections showed a slight displacement change, but converged to a constant value within the first management standard of 10 mm. By the results of measurement of shotcrete stress and steel arch rib stress, the final change amount of the two support sections showed a slight stress change, but converged to a constant value within the first management standard of 81.1 kg/㎠ and 54.2 tonf.

Surface roughness crushing effect on shear behavior using PFC (PFC를 이용한 평면 파쇄가 전단 거동에 미치는 효과)

  • Kim, Eun-Kyung;Jeong, Da-Woon;Lee, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.4
    • /
    • pp.321-336
    • /
    • 2012
  • The shear behavior at the particle/surface interface such as rock joint can determine the mechanical behavior of whole structure. Therefore, a fundamental understanding of the mechanisms governing its behavior and accurately estimation of the interface strength is essential. In this paper, PFC, a numerical analysis program of discrete element method was used to investigate the effects of the surface roughness crushing on interface strength. The surface roughness was characterized by smooth, intermediate, and rough surface, respectively. Particle shape was classified into one ball model of circular shape and 3 ball model of triangular shape. The surface shape was modelled by wall model of non-crushing surface and ball model of crushing surface. The results showed that as the bonding strength of ball model decreases, lower interface strength is induced. After the surface roughness crushing was occurred, the interface strength tended to converge and higher bonding strength induced lower surface roughness crushing. Higher friction angle was induced in wall model and higher surface roughness induced the higher friction angle. From these findings, it is verified that the surface roughness and surface roughness crushing effect on the particle/surface interface shear behavior.

Coupled Hydrological-mechanical Behavior Induced by CO2 Injection into the Saline Aquifer of CO2CRC Otway Project (호주 오트웨이 프로젝트 염수층 내 CO2 주입에 따른 수리-역학적 연계거동 분석)

  • Park, Jung-Wook;Shinn, Young Jae;Rutqvist, Jonny;Cheon, Dae-Sung;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.26 no.3
    • /
    • pp.166-180
    • /
    • 2016
  • The present study numerically simulated the CO2 injection into the saline aquifer of CO2CRC Otway pilot project and the resulting hydrological-mechanical coupled process in the storage site by TOUGH-FLAC simulator. A three-dimensional numerical model was generated using the stochastic geological model which was established based on well log and core data. It was estimated that the CO2 injection of 30,000t over a period of 200 days increased the pressure near the injection point by 0.5 MPa at the most. The pressure increased rapidly and tended to approach a certain value at an early stage of the injection. The hydrological and mechanical behavior observed from the CO2 flow, effective stress change and stress-strength ratio revealed that the CO2 injection into the saline aquifer under the given condition would not have significant effects on the mechanical safety of the storage site and the hydrological state around the adjacent fault.

Analysis and structural behavior of shield tunnel lining segment (쉴드터널 라이닝 세그멘트의 해석과 거동 특성)

  • Jung, Du-Hwoe;Lee, Hwan-Woo;Kim, Gwan-Soo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.1
    • /
    • pp.37-47
    • /
    • 2007
  • The shield tunneling method has been increasingly employed to minimize environmental damages and civil complaints in the populated and developed area. A lining segment, which is a main structure of the shield tunnel, consists of joints. Conventional foreign and domestic design data have been commonly used for design practices without a specific verification of structural analysis models, design load, and the effect of soil characteristics on the performance of lining segment. In this study, the suitability of existing analytic models used for the design of shield tunnel lining segment has been evaluated through a comparison between analytical and numerical solutions. Based on the evaluation of their suitability performed in the study, a full-circumferential beam jointed spring model (1R-S0) is proposed for design practices by considering user's convenience, the applicability of field conditions and the accuracy of analysis result. By using the proposed model, the parameter analysis was performed to investigate the effects of joint stiffness, ground rigidity, joint distribution and the number of joints on the behavior of lining segment. Parameters considered in the investigation have been appeared to affect the behavior of lining segment. Among those parameters, joint stiffness has been appeared to have the most significant effect on the bending moment and displacement of lining segment.

  • PDF

Auxiliary Reinforcement Method for the Safety of Tunnelling Face (터널 막장안정성에 따른 보강공법 적용)

  • Kim, Chang-Yong;Park, Chi-Hyun;Bae, Gyu-Jin;Hong, Sung-Wan;Oh, Myung-Ryul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.2
    • /
    • pp.11-21
    • /
    • 2000
  • Tunnelling has been created as a great extent in view of less land space available because the growth of population in metropolitan has been accelerated at a faster pace than the development of the cities. In tunnelling, it is often faced that measures are obliged to be taken without confirmation for such abnormality as diverged movement of surrounding rock mass, growing crack of shotcrete and yielding of rockbolts. In this case, it is usually said that the judgments of experienced engineers for the selection of measure are importance and allowed us to get over the situations in many construction sites. But decrease of such experienced engineers need us to develop the new system to assist the selection of measures for the abnormality without any experiences of similar tunnelling sites. In this study, After a lot of tunnelling reinforcement methods were surveyed and the detail application were studied, an expert system was developed to predict the safety of tunnel and choose proper tunnel reinforcement system using fuzzy quantification theory and fuzzy inference rule based on tunnel information database. The expert system developed in this study have two main parts named pre-module and post-module. Pre-module decides tunnel information imput items based on the tunnel face mapping information which can be easily obtained in-situ site. Then, using fuzzy quantification theory II, fuzzy membership function is composed and tunnel safety level is inferred through this membership function. The comparison result between the predicted reinforcement system level and measured ones was very similar. In-situ data were obtained in three tunnel sites including subway tunnel under Han river. This system will be very helpful to make the most of in-situ data and suggest proper applicability of tunnel reinforcement system developing more resonable tunnel support method from dependance of some experienced experts for the absent of guide.

  • PDF

Review of Numerical Approaches to Simulate Time Evolution of Excavation-Induced Permeability in Argillaceous Rocks (점토질 퇴적암 내 굴착영향영역 투수특성의 시간경과 변화 파악을 위한 수치해석기법에 대한 고찰)

  • Kim, Hyung-Mok;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.30 no.6
    • /
    • pp.519-539
    • /
    • 2020
  • We reviewed numerical approaches to assess a hydraulic properties of excavation-disturbed zone (EDZ)created in argillaceous sedimentary rocks. It has been reported that fractures in the sedimentary rocks containing expansive clays are gradually closing due to swelling and their permeabilities are evolving to the level of in-tact rock, which is known as a self-healing or self-sealing process. The numerical approaches introduced here are capable of simulating spatio-temporal variation of EDZ permeability during long-term operation of a repository by including the self-healing characteristics of fractures, which wa observed in laboratory as well as in-situ experiments, The applicability of the numerical approaches was verified from the comparison to in-situ measurements of EDZ permeability at underground research laboratories.

Development of Hydro-Mechanical Coupling Method for CO2 Sequestration and Its Application to Sleipner Project (이산화탄소 지중저장을 위한 수리-역학 연동 해석 기술 개발 및 적용 - 슬라이프너 프로젝트)

  • Kwon, Sangki;Lee, Hyeji
    • Tunnel and Underground Space
    • /
    • v.27 no.3
    • /
    • pp.146-160
    • /
    • 2017
  • $CO_2$ sequestration for alleviating global warming is a hot issue in the world. In this study, TOUGH2 and FLAC3D were combined for analyzing the hyro-mechanical coupling behaviors expected in $CO_2$ sequestration and applied it to Sleipner project carried out in Norway. In the analysis, the influence of pore pressure on in situ stress was considered and the influence of caprock permeability on hydro-mechanical behaviors was analyzed. In the condition of constant injection rate, pressure and saturation at the injection well, liquid and gas saturation in rock, major and minor stress variations with time and distance from the injection well, and horizontal and vertical displacements after injection could be investigated. The major principal stress was quickly increased in the early stage and then slowly decreased to a stable value, which was higher than the initial value. In contrast, the minor principal stress returned to initial value after some increase in the early stage. Surface upheaval was steadily increased and it was up to 15mm in 2 years after injection. When the caprock's permeability was changed from $3e-15m^2{\sim}3e-18m^2$, it was found that the injection well pressure and surface upheaval were inversely propotional to the permeability.