• Title/Summary/Keyword: 태양전지 셀

Search Result 171, Processing Time 0.028 seconds

Relation Between Wire Sawing-damage and Characteristics of Single Crystalline Silicon Solar-cells (와이어 소잉 데미지 층이 단결정 실리콘 태양전지 셀 특성에 미치는 영향)

  • Kim, Il-Hwan;Park, Jun-Seong;Park, Jea-Gun
    • Current Photovoltaic Research
    • /
    • v.6 no.1
    • /
    • pp.27-30
    • /
    • 2018
  • The dependency of the electrical characteristics of silicon solar-cells on the depth of damaged layer induced by wire-sawing process was investigated. To compare cell efficiency with residual sawing damage, silicon solar-cells were fabricated by using as-sawn wafers having different depth of saw damage without any damaged etching process. The damaged layer induced by wire-sawing process in silicon bulk intensely influenced the value of fill factor on solar cells, degrading fill factor to 57.20%. In addition, the photovoltaic characteristics of solar cells applying texturing process shows that although the initial depth of saw-damage induced by wire-sawing process was different, the value of short-circuit current, fill-factor, and power-conversion-efficiency have an almost same, showing ~17.4% of cell efficiency. It indicated that the degradation of solar-cell efficiency induced by wire-sawing process could be prevented by eliminating all damaged layer through sufficient pyramid-surface texturing process.

Se-coated Cu-Ga-In 금속전구체 셀렌화 반응메카니즘 연구

  • Kim, U-Gyeong;Gu, Ja-Seok;Park, Hyeon-Uk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.47.2-47.2
    • /
    • 2011
  • 광전환 효율 20% (AM1.5G) 이상의 고효율 화합물 박막태양전지의 광흡수층으로 많은 관심을 받고 있는 $Cu(In,Ga)Se_2$ (CIGS) 태양전지의 광흡수층은 다양한 공정에 의해 제조가 가능하다. 현재 고효율 CIGS 셀 생성을 위해 널리 사용되고 있는 CIGS 흡수층 성장공정은 "co-evaporation (동시증발법)"과 2-step 공정이라 불리는 "precursorselenization(전구체-셀렌화)" 방법이다. 동시증발법은 개별원소 Cu, In, Ga, Se들을 고진공 분위기에서 고온(550~600$^{\circ}C$) 기판위에 증착하는 방법으로 소면적에서 가장 좋은 효율(~20%)을 보이는 공정이다. 하지만, 고온, 고진공 공정조건과 대면적 증착시 온도 및 조성 불균일 등의 문제점 등으로 상용화에 어려움이 있다. 전구체-셀렌화 공정은 1단계에서 다양한 방식(예: 스퍼터링, 전기도금, 프린팅 등) 방식으로 CuGaIn 전구체를 증착하고, 2단계에서 고온(550~600$^{\circ}C$)하에 H2Se gas 혹은 Se vapor와 반응시켜 CIGS를 생성한다. 일본의 Showa Shell와 Honda Soltec 등에 의해 이미 상업화 되었듯이, 저비용 대면적으로 상업화 가능성이 높은 공정으로 평가되고 있다. 하지만, 2단계에서 사용되는 H2Se 및 Se vapor의 유독성, 기상 Se과 금속전구체 간의 느린 셀렌화 반응속도, 셀렌화반응 후 생성된 CIGS 박막 두께방향으로의 Ga 불균일 분포, 생성된 CIGS/Mo 계면 접착력 저하 등의 문제점들이 개선, 해결되어야만 상업화에 성공할 수 있을 것이다. 본 연구에서는 Se layer가 코팅된 금속전구체의 셀렌화 반응메카니즘을 in-situ high-temperature XRD를 이용하여 연구하였다. 금속전구체는 스퍼터링, 스프레이 등 다양한 방법으로 제조되었고, 반응메카니즘 연구결과를 바탕으로 Se 코팅된 금속전구체를 이용한 급속열처리 공정의 최적화를 시도하였다.

  • PDF

CIGS 박막 반응메카니즘 및 생성공정의 이해

  • Kim, U-Gyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.24-24
    • /
    • 2010
  • Chalcopyrite $Cu(In,Ga)Se_2$ (CIGS) 화합물 반도체는 고효율 박막태양전지의 광 흡수층으로 사용되는 물질 중 가장 우수한 효율 (19.9%, NREL 2008)을 보유하고 있다. CIGS는 직접천이형 에너지밴드갭 (direct bandgap)을 가지고 있고, 광흡수계수가 $1{\times}10^5\;cm^{-1}$로서 반도체 중 서 가장 흡수율이 높은 재료에 속하여 두께 $1{\sim}2\;{\mu}m$의 박막으로도 고효율의 태양전지 제조가 가능하고, 또한 장기적으로 전기광학적 안정성이 매우 우수한 특성을 지니고 있다. 현재 고효율 CIGS 셀생성을 위해 널리 사용되고 있는 CIGS 흡수층 성장공정은 "co-evaporation(동시증발법)"과 2-step 공정이라 불리는 "sputter-selenization(스퍼터-셀렌화)" 방법이다. 동시증발법은 개별원소 Cu, In, Ga, Se 들을 고진공 분위기에서 고온 ($550{\sim}600^{\circ}C$)기판위에 증착하는 방법으로 소면적에서 가장 좋은 효율(~20%)을 보이는 공정이다. 하지만, 고온, 고진공 공정조건과 대면적 증착시 온도 및 조성 불균일 등의 문제점 등으로 상용화에 어려움이 있다. 스퍼터-셀렌화 공정은 1단계에서 스퍼터링 방식으로 CuGaIn 전구체를 증착하고, 2단계에서 고온($550{\sim}600^{\circ}C$)하에 $H_2Se$ 혹은 Se vapor와 반응시켜 CIGS를 생성한다. 일본의 Showa Shell와 Honda Soltec 등에 의해 이미 상업화 되었듯이, 저비용 대면적으로 상업화 가능성이 높은 공정으로 평가되고 있다. 하지만, 2단계에서 사용되는 $H_2Se$ 및 Se vapor의 유독성, 기상 Se과 금속전구체 간의 느린 셀렌화 반응속도, 셀렌화반응 후 생성된 CIGS 박막 두께방향으로의 Ga 불균일분포, 생성된 CIGS/Mo 계면 접착력 저하등의 문제점들이 해결되어야만 상업화에 성공할 수 있을 것이다. 본 Tutorial에서는 CIGS 물질의 열역학 상평형과 반응메카니즘에 대해 설명하고, 다양한 생성 공정들을 소개할 것이다.

  • PDF

A study on the surface characteristics of diamond wire-sawn silicon wafer for photovoltaic application (다이아몬드 코팅 와이어로 가공된 태양전지용 실리콘 웨이퍼의 표면 특성에 관한 연구)

  • Lee, Kyoung-Hee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.6
    • /
    • pp.225-229
    • /
    • 2011
  • Most of the silicon cutting methods using the multi-wire with the slurry injection have been used for wafers of the crystalline solar cell. But the productivity of slurry injection cutting type falls due to low cutting speeds. Also, the direct contact with the metal wire and silicon block increases the concentration of metallic impurities in the wafer's surface. In addition, the abrasive silicon carbide (SiC) generates pollutants. And production costs are rising because it does not re-use the worn wire. On the other hand, the productivity of the cutting method using the diamond coated wire is about 2 times faster than the slurry injection cutting type. Also, the continuous cutting using the used wire of low wear is possible. And this is a big advantage for reduced production costs. Therefore, the cutting method of the diamond coated wire is more efficient than the slurry injection cutting technique. In this study, each cutting type is analyzed using the surface characteristics of the solar wafer and will describe the effects of the manufacturing process of the solar cell. Finally, we will suggest improvement methods of the solar cell process for using the diamond cutting type wafer.

The Study on the Separation Characteristics of ion with ion Exchange Membrane - I.The Characteristics of ion Exchange Membrane with the Separator of All-Vanadium Redox Flow Battery - (이온교환막을 이용한 이온의 분리특성에 관한 연구 - I. 전바나듐계 레독스-흐름 전지의 격막용 이온 교환막의 특성 -)

  • Kang, An-Soo
    • Applied Chemistry for Engineering
    • /
    • v.4 no.2
    • /
    • pp.393-402
    • /
    • 1993
  • Redox flow secondary battery have been studied actively as one of the most promising electrochemical energy storage devices for a wide range of applications, such as electric vehicles, photovoltaic arrays, and excess power generated by electric power plants. In all-vanadium redox flow battery using solution of vanadium-sulfuric acid as a active material, the difficulty in developing an efficient ion selective membrane can still be identified. The asymmetric cation exchange membrane(M-30) as a separator of all-vanadium redox flow battery which were obtained by the reaction of chlorosulfonation for 30 minutes under the irradiation of UV, showed its superiority in the transport number of 0.94 and electrical resistivity of $0.5{\Omega}{\cdot}cm^2$. The base membrane were prepared by lamination a low density polyethlene film of $10{\mu}m$ thickness on polyolefin membrane(HIPORE 120). The electrical resistivity of M-30 membrane in real solution of vanadium-sulfuric acid was $3.79{\Omega}{\cdot}cm^2$ and it was similar to that of Nafion 117 membrane. Also the cell resistivity was $6.6{\Omega}{\cdot}cm^2$and lower than that of Nafion 117. In considertion of electrochemical properties and costs of membranes, M-30 membrane was better than that of Nafion 117 and CMV of Asahi glass Co. as a separator of all-vanadium redox flow battery.

  • PDF

A Comparison Analysis on the Efficiency of Solar Cells of Shingled Structure with Various ECA Materials (다양한 ECA 소재를 활용한 shingled 구조의 태양전지 효율 비교 분석)

  • Jang, Jae Joon;Park, Jeong Eun;Kim, Dong Sik;Choi, Won Seok;Lim, Donggun
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.4
    • /
    • pp.1-9
    • /
    • 2019
  • Modules using 6 inch cells have problems with loss due to empty space between cells. To solve this problem made by shingled structure which can generate more power by utilizing empty space by increasing the voltage level than modules made in 6inch cell. Thus, in this paper, the c-Si cutting cells were produced using nanosecond green laser, and then the ECA was sprayed and cured to perform cutting cell bonding. Three types of ECA materials (B1, B2, B3) with Ag as the main component were used, and experimental conditions varied from 5 to 120 seconds of curing time, 130 to $210^{\circ}C$ of curing temperature, and 1 to 3 of curing numbers. As a results of experiments varying curing time, B1 showed efficiency 19.88% in condition of 60 seconds, B2 showed efficiency 20.15% in 90 seconds, and B3 showed efficiency 20.27% in 60 seconds. In addition, experiments with varying curing temperature, It was confirmed highest efficiency that 20.04% in condition of $170^{\circ}C$ with B1, 20.15% in condition of $150^{\circ}C$ with B2, 20.27% in condition of $150^{\circ}C$ with B3. These are because the Ag particles are densely formed on the surface to make the conduction path. After optimizing the conditions of temperature and curing time, the secondary-tertiary curing experiments were carried out. as the structural analysis, conditions of secondary-tertiary curing showed cracks that due to damp heat aging. As a result, it was found that the ECA B3 had the highest efficiency of 20.27% in condition of 60 seconds of curing time, $150^{\circ}C$ of curing temperature, and single number of curing, and that it was suitable for the manufacture of Solar cell of shingled structure rather than ECA B1 and B2 materials.

Using the Loss parameter calculation method for the CPV system simulation (손실파라미터계산방법을 이용한 집광형태양광발전시스템 시뮬레이션)

  • Lee, Kang-Yeon;Jeong, Byeong-Ho;Kim, Ji-won
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.8
    • /
    • pp.17-26
    • /
    • 2017
  • CPV system is composed with CPV cells, modules, PCS(power conditioning system), solar tracker, system installation and balance of systems(BOS). Mention about modelling method which is applied for CPV system simulation and evaluation system analysis. This paper focuses on CPV system modeling and optimal design of the electric energy production analysis through the development of proposed optimal CPV system simulation. Calculated simulation results of the generalized CPV system in regard to loss parameter calculation method can make out optimal configuration of CPV system with high reliability and stability. The loss parameter calculation method establish a mathematical modeling for the purposed of simulation and utilization various data for economical analysis of the CPV system design.

Electrochemical Performance of High-Voltage Lithium-Ion Batteries with NCM Cathode Varying the Thickness of Coating Layer by Atomic Layer Deposition (Atomic Layer Deposition의 두께 변화에 따른 NCM 양극에서의 고전압 리튬 이온 전지의 전기화학적 특성 평가)

  • Im, Jinsol;Ahn, Jinhyeok;Kim, Jungmin;Sung, Shi-Joon;Cho, Kuk Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.2
    • /
    • pp.60-68
    • /
    • 2019
  • High-voltage operation of the lithium ion battery is one of the advantageous approaches to obtain high energy capacity without changing the conventional cell components and structure. However, operating at harsh condition inevitably results in severe side reactions at the electrode surface and structural disintegration of active material particles. Herein we coated layers composed of $Al_2O_3$ and ZnO on the electrode based on NCM using atomic layer deposition (ALD). Thicker layers of novel Al-doped ZnO (AZO) coating compared to conventional ALD coated layers are prepared. Cathode based on NCM with the varying AZO coating thickness are fabricated and used for coin cell assembly. Effect of ALD coating thickness on the charge-discharge cycle behavior obtained at high-voltage operation was investigated.

DSSC Efficiency Characteristics by Annealing Temperature and Thickness of Electrodes (전극의 두께와 소성 온도에 따른 DSSC의 효율 특성)

  • Hwang, Ki-Seob;Ha, Ki-Ryong
    • Applied Chemistry for Engineering
    • /
    • v.21 no.4
    • /
    • pp.405-410
    • /
    • 2010
  • The photovoltaic performance of DSSCs fabricated with different electrode thickness and different annealing temperature with the P25 $TiO_2$ and the Dyesol $TiO_2$ was measured. Thickness change of $TiO_2$ electrodes was measured using cross-sectional FE-SEM before and after annealing. Photovoltaic efficiencies of DSSCs were also measured by changing annealing temperature of platinum (Pt) paste on the counter electrode. Photovoltaic performances of DSSCs made with one layer of P25 (${\sim}20.4\;{\mu}m$) and one layer of Dyesol $TiO_2$ (${\sim}9.1\;{\mu}m$) annealed at $500^{\circ}C$ for 30 min. showed highest efficiencies of 3.8% and 5.8%, respectively.

Effect of Indium Zinc Oxide Transparent Electrode on Power Conversion Efficiency of Flexible Dye-Sensitized Solar Cells (플렉시블 염료 감응형 솔라셀의 효율에 미치는 Indium Zinc Oxide 투명전극의 영향)

  • Lee, Do Young;Chung, Chee Won
    • Korean Chemical Engineering Research
    • /
    • v.47 no.1
    • /
    • pp.105-110
    • /
    • 2009
  • IZO thin films have been deposited on poly(ethylene terephthalate) flexible substrate under varying radio frequency (rf) power, process pressure and thickness of IZO films using rf magnetron sputtering under $Ar/O_2$ gas mix. As the process pressure increased, the deposition rate was slightly increased and the transmittance showed little change, but the resistivity was increased. With increasing rf power, the great increase in deposition rate was observed but the transmittance showed a slight change only, and the resistivity was decreased. In addition, an attempt was made to find the optimal thickness of IZO films under varying the thickness of IZO films at the process conditions of 1 mTorr pressure and 90 W rf power, which showed lowest resistivity. IZO thin films with the thickness of $1,500{\AA}$ showed lowest resistivity and also showed highest transmittance around the wavelength zone of the maximum absorption. The power conversion efficiency of solar cells fabricated using various transparent electrodes with different thicknesses were measured and the solar cell with IZO electrode of $1,500{\AA}$ showed the maximum conversion-efficiency of 2.88 %.