• 제목/요약/키워드: 태양열펌프

검색결과 53건 처리시간 0.022초

연간 성능을 고려한 가정용 태양열-흡수식 히트펌프의 에너지 절약효과 분석 (An Analysis of Energy Savings on the Solar-Absorption Heat Pump Systems for the Residential Use with the consideration of Annual Performance)

  • 이재효;이관수;원승호;이명호
    • 설비공학논문집
    • /
    • 제3권4호
    • /
    • pp.263-275
    • /
    • 1991
  • Studies on the annual performance of three different type of solar-absorption heat pump system (parallel type, series type, and generator type) are carried out by using the computer simulation. These include the calculation of solar energy from the solar collector, and the revision of computer package, developed by Oak Ridge National Laboratory, to predict the annual performance. Finally using weather data and load conditions, the annual performance are obtained. Results show that the annual operating costs of three solar-absorption heat pump systems are almost same values and 44% lower than that of the pure absorption heat pump system. The total annual input energys of solar-absorption heat pump systems are also about 44% lower than that of the pure absorption heat pump. The nominal size of the solar-absorption heat pump systems can be reduced to a value of 55% that of the pure absorption heat pump that would normally be specified under identical conditions.

  • PDF

태양열 이용을 위한 직접접촉식열교환기(DCHX)의 작동에 관한 실험적 연구 (An Experimental Study on the Performance of a Direct Contact Heat Exchanger(DCHX) for Solar Application)

  • 현영진;현준호;천원기;강용혁
    • 한국태양에너지학회 논문집
    • /
    • 제24권2호
    • /
    • pp.73-81
    • /
    • 2004
  • 태양열의 이용에 있어 직접접촉식 열교환기(DCHX)는 여러 가지 잇점을 제공한다. 그중에서도 제일 부각되는 것은 폐쇄형 열교환기의 대체에 다른 경비 절약과 작은 온도차에서도 열교환이 가능한 뛰어난 열성능일 것이다. 본 연구는 액-액 타입의 직접접촉식 열교환기에 대한 열성능 실측을 통하여 직접 접촉 열교환에 대한 이해를 증진하고 아울러 태양열에의 적용성을 평가하고자 하였다. 실측 시스템은 집열기와 펌프 그리고 직접접촉식 열교환기로 구성되어 있는데 작동유체의 종류에 따라 서로 다른 두 가지 방법에 의해 열교환기 내로 유입되도록 하였다. 작동유체로는 Texatherm 46과 물이 사용되었는데 이는 이들 유체가 서로 전이지 않고 높은 온도$(<150^{\circ})$에서도 화학적으로도 안전하며 열적으로도 비교적 양호한 성능을 가지고 있기 때문이다 본 연구는 실측을 통해 열교환기 내에서의 미미한 열성층화 현상에 대한 메카니즘을 확인하였으며 아울러 열교환기의 작동유체에 따라 작동의 안정성과 열적 성능(11% 차이)이 다르게 나타날 수 있음을 보여주고 있다.

R744와 R22를 적용한 태양열 하이브리드 열펌프의 성능 시뮬레이션 비교 분석 (Simulation Analysis on Performance Comparison between R744 and R22 Solar Hybrid Heat Pump)

  • 강변;조홍현
    • 한국태양에너지학회 논문집
    • /
    • 제33권2호
    • /
    • pp.1-10
    • /
    • 2013
  • Simulation study of a solar hybrid heat pump using R744 and R22 for residential applications was carried out according to heat pump operating temperature, outdoor temperature and solar radiation. As a result, when the heat pump operating temperature increases from $40^{\circ}C$ to $48^{\circ}C$, the COP of a R744 and R22 heat pump system decrease from 2.15 to 1.7 and from 3.09 to 2.69, respectively. Besides, as the outdoor temperature rises from $3^{\circ}C$ to $11^{\circ}C$, the COP of R744 and R22 heat pump system increase from 1.73 to 2.12 and from 2.73 to 3.02. When the solar radiation increases from 10 to 20 $MJ/m^2$, the collector operating time and collector efficiency of R744 heat pump increase 10.3 times and 50.7%, respectively. The performance of R744 solar hybird heat pump is more sensitive to operation condition compared to that of R22. Besides, the solar heating system is more effective to the R744 heat pump system.

주거용 태양열 하이브리드 이산화탄소 열펌프 시스템의 성능특성에 관한 해석적 연구 (Simulation Study on the Performance Characteristics in the Solar Hybrid R744 Heat Pump for Residential Applications)

  • 김원석;조홍현
    • 설비공학논문집
    • /
    • 제23권10호
    • /
    • pp.678-686
    • /
    • 2011
  • Simulation study on the operating characteristics in the solar hybrid R744 heat pump system for residential applications was carried out with heat pump operating temperature, outdoor temperature and solar radiation. As a result, collector operating time is decreased by 1.5 hours due to the increase of water temperature in the heat storage tank when the heat pump operating temperature rises. Heat pump operating time is reduced by 19.4% owing to the high temperature of a heat storage tank. Besides, indoor heating time is decreased from 10.3 to 5.5 hours as the indoor temperature increases from $3^{\circ}C$ to $11^{\circ}C$. In addition to, when the solar radiation rises from 10 to 20 MJ/$m^2$, the maximum outlet temperature of a solar collector is increased from $65^{\circ}C$ to $71^{\circ}C$.

열원의 온도변화에 따른 겨울철 태양열-지열 하이브리드 R22 열펌프의 성능에 관한 해석적 연구 (Theoretical Study on the Performance in a Solar-Geothermal Hybrid R22 Heat Pump During Winter Season according to Heat Source Temperature)

  • 강변;조홍현
    • 한국지열·수열에너지학회논문집
    • /
    • 제8권4호
    • /
    • pp.24-31
    • /
    • 2012
  • The Solar and geothermal energy have many advantage like low cost, non-toxic, and unlimited. But those the have very low energy efficiency. In this study, the theoretical study of performance in a sola-geothermal hybrid heat pump with operating conditions has carried out. As a result, as the solar radiation increases from 1 $MJ/m^2$ to 20 $MJ/m^2$, the heat pump operating time decreases by 19.5% from 18 times to 14.5 times and the heat pump heat decreases by 23%. Besides, the heating COP increases by 21.4% when the evaporator inlet temperature increases from $11^{\circ}C$ to $19^{\circ}C$. By adapting the geothermal system into a solar hybrid R22 heat pump, the system performance and reliability increases significantly for variable operating conditions during winter season.

$CH_2F_2-CF_3CH_2F-CF_3CHF_2$계 냉매적용 태양열 열펌프시스템 성능 연구( I ) (A Study on the Performance of Solar Heat, Pump Cycle System for $CH_2F_2$, $CF_3CHF_2$ and $CF_3CH_2F$( I ))

  • 이순복;정현채;배준우;선경호
    • 한국태양에너지학회 논문집
    • /
    • 제23권2호
    • /
    • pp.71-79
    • /
    • 2003
  • The goal of this paper is to measure and compare the performance of solar heat pump for refrigerants. To accomplish the goal, solar heat pump with aluminum roll bond type evaporator and indoor heat exchanged(condenser) was built. The test results showed that the COP and heating capacity of HFC-32/125/134a(23/25/52 wt%, $CH_2F_2/CF_3CHF_2/CF_3CH_2F$) were higher than those of HCFC-22$(CHClF_2)$. A study proved that best conditions to use heating system that is about $40m^2$ and $80m^2$. The COP range of the whole system was from 4 to 6 according to the solar collector's area variation. Hydrochlo-rofluorocarbon HCFC-22$(CHClF_2)$ is included in the compound to be controlled. HFC-32/125/134a(23/25/52 wt%, $CH_2F_2/CF_3CHF_2/CF_3CH_2F$) is the most suitable replacement HCFC-22$(CHClF_2)$ in solar heat pump application. The solar heat pump system was designed to show the best efficiency that the room temperature make $18\sim20^{\circ}C$ and $23\sim25^{\circ}C$ in Seoul during the fall season.

온수 급탕 및 난방을 위한 히트 펌프 태양열 시스템의 성능 분석 (Performance Analysis of Solar Thermal System with Heat Pump for Domestic Hot Water and Space Heating)

  • 손진국
    • 한국태양에너지학회 논문집
    • /
    • 제38권5호
    • /
    • pp.49-62
    • /
    • 2018
  • This study aims to analyze the performance of solar thermal system with heat pump for domestic hot water and heat supply. There are four types of system. Systems are categorized based on the existence of a heat pump and the ways of controlling the working fluid circulating from the collector. Working fluid is controlled by either temperature level (categorized as system 1 and 2) or sequential flow (system 3 and 4). Heat balance of the system, the solar fraction, hot water and heating supply rates, and performance of heat pump are analyzed using TRNSYS and TESS component programs. Technical specifications of the main facilities are as follow; the area of the collector to $25m^2$, the volumes of the main tank and the buffer tank to $0.5m^3$ and $0.8m^3$, respectively. Heating capacity of the heat pump in the heating mode is set to 30,000 kJ / hr. Hot water supply set 65 liters per person each day, total heat transfer coefficient of the building to 1,500 kJ / kg.K. Indoor temperature is kept steadily around $22^{\circ}C$. The results are as follows; 6 months average solar fraction of system 1 turns out to be 39%, which is 6.7% higher than system 2 without the heat pump, indicating a 25% increase of solar fraction compared to that of system 2. In addition, the solar fraction of system 1 is 2% higher than that of system 3. Hot water and heating supply rate of system 1 are 93% and 35%, respectively. Considering the heat balance of the system, higher heat efficiency, and solar fraction, as whole, it can be concluded that system 1 is the most suitable system for hot water and heat supply.

Facade 일체형 태양열 집열기를 갖는 태양열/지열 하이브리드 시스템의 태양열 집열시스템 작동특성 연구 (A Study on the Operating Characteristics of Solar Collecting System in Solar Thermal/Geothermal Hybrid System with Facade Integrated Solar Collector)

  • 백남춘;이진국;유창균;윤응상;윤종호
    • 한국태양에너지학회 논문집
    • /
    • 제30권5호
    • /
    • pp.69-76
    • /
    • 2010
  • In this study, the solar thermal and geo-source heat pump(GSHP) hybrid system for heating and cooling of Zero Energy Solar House(ZESH) was analyzed by experiment. The GSHP in this hybrid system works like as aback-up device for solar thermal system. This hybrid system was designed and installed for Zero Energy Solar House (KIER ZeSH) in Korea Institute of Energy Research. The purpose of this study is to find out that this system is optimized and operated normally for the heating load of ZeSH. The analysis was conducted as followings ; - the thermal performance of facade integrated solar collector - the on/off characteristics of solar system and GSHP - the contribution of solar thermal system. - the performance of solar thermal and ground source heat pump system respectively. - the meet of thermal load (space and water heating load). This experimental study could be useful for the optimization of this system as well as its application in house. This hybrid system could be commercialized for the green home if it is developed to a package type.

증발기 열원으로 태양열을 이용하며 LiSCN+LiBr 수용액을 사용하는 흡수식 2중효용 난방시스템의 열역학적 해석 (Thermodynamic Analysis of a Double-Effect Absorption Heating System Using Water-LiBr-LiSCN Solution with Solar Evaporator Heating)

  • 원승호
    • 한국태양에너지학회 논문집
    • /
    • 제25권3호
    • /
    • pp.27-35
    • /
    • 2005
  • In this paper, a thermodynamic analysis was performed to provide design data for a double-effect absorption heating system with water-LiBr-LiSCN mixture which utilizes solar energy as evaporator heat source. In addition, a comparative study of the water-LiBr-LiSCN mixture against the water-LiBr pair was conducted by a computer simulation. The computer simulation is based on mass, material and heat balance equations for each part of the system. Coefficients of performance and flow ratios for effects of different operating temperatures are investigated. It is found that the heating COP is higher for the water-LiBr-LiSCN mixture than for the water-LiBr pair, and FR is lower for the former.