• Title/Summary/Keyword: 태양광 발전량 분석 모델

Search Result 37, Processing Time 0.026 seconds

Analysis of prediction model for solar power generation (태양광 발전을 위한 발전량 예측 모델 분석)

  • Song, Jae-Ju;Jeong, Yoon-Su;Lee, Sang-Ho
    • Journal of Digital Convergence
    • /
    • v.12 no.3
    • /
    • pp.243-248
    • /
    • 2014
  • Recently, solar energy is expanding to combination of computing in real time by tracking the position of the sun to estimate the angle of inclination and make up freshly correcting a part of the solar radiation. Solar power is need that reliably linked technology to power generation system renewable energy in order to efficient power production that is difficult to output predict based on the position of the sun rise. In this paper, we analysis of prediction model for solar power generation to estimate the predictive value of solar power generation in the development of real-time weather data. Photovoltaic power generation input the correction factor such as temperature, module characteristics by the solar generator module and the location of the local angle of inclination to analyze the predictive power generation algorithm for the prediction calculation to predict the final generation. In addition, the proposed model in real-time national weather service forecast for medium-term and real-time observations used as input data to perform the short-term prediction models.

Multiple Linear Regression Analysis of PV Power Forecasting for Evaluation and Selection of Suitable PV Sites (태양광 발전소 건설부지 평가 및 선정을 위한 선형회귀분석 기반 태양광 발전량 추정 모델)

  • Heo, Jae;Park, Bumsoo;Kim, Byungil;Han, SangUk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.6
    • /
    • pp.126-131
    • /
    • 2019
  • The estimation of available solar energy at particular locations is critical to find and assess suitable locations of PV sites. The amount of PV power generation is however affected by various geographical factors (e.g., weather), which may make it difficult to identify the complex relationship between affecting factors and power outputs and to apply findings from one study to another in different locations. This study thus undertakes a regression analysis using data collected from 172 PV plants spatially distributed in Korea to identify critical weather conditions and estimate the potential power generation of PV systems. Such data also include solar radiation, precipitation, fine dust, humidity, temperature, cloud amount, sunshine duration, and wind speed. The estimated PV power generation is then compared to the actual PV power generation to evaluate prediction performance. As a result, the proposed model achieves a MAPE of 11.696(%) and an R-squred of 0.979. It is also found that the variables, excluding humidity, are all statistically significant in predicting the efficiency of PV power generation. According, this study may facilitate the understanding of what weather conditions can be considered and the estimation of PV power generation for evaluating and determining suitable locations of PV facilities.

태양광발전소 현장 진단평가 기술: 발전량 시뮬레이션과 다채널 I-V 장치를 통한 고장진단

  • Go, Seok-Hwan;Sin, U-Gyun;Sin, Ju-Yeong;Choe, Ui-Seong
    • Bulletin of the Korea Photovoltaic Society
    • /
    • v.7 no.2
    • /
    • pp.7-15
    • /
    • 2021
  • 태양광 발전소에 대한 성능을 평가하기 위해서는 IEC 61724-1에 적합한 계측장치를 설치하고 데이터를 수집하여 평가하는 것이 일반적인 방법이다. 본 논문에서는 태양광발전소 현장에서 DC 어레이 성능을 평가하기 위한 방법을 제시하였다. 측정 일사량과 같은 환경정보 값과 태양광 DC 어레이 전압-전류 특성 곡선을 이용해 일사량에 따른 출력모델 식을 도출하였다. 도출된 모델 식은 태양전지 셀의 종류나 버스바에 따라서 차이가 발생되므로 기존의 태양전지 셀 등가회로 수식을 반영한 시뮬레이션 모델식이 적절히 변경되어야 함을 실험을 통해 검증하였다. 주기적인 진단 평가를 실시하지 않는 국내외 태양광 발전소는 성능저하가 발생된 상태로 운전되는 경우가 다수 일 것이다. 대부분의 관제모니터링을 시스템은 미쓰매칭 손실 평가분석이 불가능하며 운전상태 모니터링 하는 시스템이 대부분이다. 이에 태양광 발전소의 효율적 운영을 위해서는 현장진단 장치를 이용한 주기적 성능진단 평가나 발전소 데이터의 손실평가 분석 기술의 개발이 필요할 것이다.

Inverter-Based Solar Power Prediction Algorithm Using Artificial Neural Network Regression Model (인공 신경망 회귀 모델을 활용한 인버터 기반 태양광 발전량 예측 알고리즘)

  • Gun-Ha Park;Su-Chang Lim;Jong-Chan Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.2
    • /
    • pp.383-388
    • /
    • 2024
  • This paper is a study to derive the predicted value of power generation based on the photovoltaic power generation data measured in Jeollanam-do, South Korea. Multivariate variables such as direct current, alternating current, and environmental data were measured in the inverter to measure the amount of power generation, and pre-processing was performed to ensure the stability and reliability of the measured values. Correlation analysis used only data with high correlation with power generation in time series data for prediction using partial autocorrelation function (PACF). Deep learning models were used to measure the amount of power generation to predict the amount of photovoltaic power generation, and the results of correlation analysis of each multivariate variable were used to increase the prediction accuracy. Learning using refined data was more stable than when existing data were used as it was, and the solar power generation prediction algorithm was improved by using only highly correlated variables among multivariate variables by reflecting the correlation analysis results.

Automated Machine Learning-Based Solar PV Forecasting Considering Solar Position Information (태양 위치 정보를 고려한 AutoML 기반의 태양광 발전량 예측)

  • Jinyeong Oh;Dayeong So;Byeongcheon Lee;Jihoon Moon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.322-323
    • /
    • 2023
  • 지속 가능한 에너지인 태양광 발전은 전 세계에서 널리 활용하는 재생 에너지 원천 중 하나로 최근 효율적인 태양광 발전 시스템 운영을 위해 태양광 발전량을 정확하게 예측하기 위한 연구가 활발히 진행되고 있다. 태양광 발전량 예측 모델을 구성하기 위해서는 기상 및 대기 환경을 넘어 태양의 위치에 따른 일사량의 정보가 필수적이나 태양의 실시간 위치 정보를 입력 변수로 활용한 연구가 부족한 실정이다. 그리하여 본 논문에서는 시간과 태양광 발전소 위치를 기반으로 태양의 고도와 방위각을 실시간으로 계산하여 입력 변수로 사용하는 방식을 제안한다. 이를 위해 AutoML 기반의 다양한 기계학습 모델을 구성하여 태양광 발전율을 예측하고 그 성능을 비교 분석하였다. 실험 결과, 태양 위치 정보를 포함한 경우에 환경 변수만을 고려하였을 때보다 예측 성능이 크게 향상되었음을 확인할 수 있었으며, Extra Trees 모델의 경우 태양 위치 정보를 추가하였을 때 MAE(Mean Absolute Error)가 33.90 에서 22.38 까지 낮아지는 결과를 확인하였다.

Photovoltaic Prediction System based on Recurrent Neural Network (순환신경망 기반 태양광 발전량 예측 시스템)

  • Jung, Seolryung;Park, Kyoungwook;Koh, Jingwang;Lee, Sungkeun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.849-852
    • /
    • 2021
  • 화석연료의 빈번한 사용으로 인한 지구온난화 문제가 심각해지면서 화석연료를 대체할 수 있는 신재생 에너지가 떠오르고 있다. 그중에서도 에너지원이 청정하고 무제한으로 사용할 수 있다는 장점을 가진 태양광 발전소가 주목을 받고 있다. 하지만 기후에 따라 영향을 많이 받는 특징 때문에 안정적인 전력 생산을 위해서는 태양광 발전량 예측이 매우 중요해지고 있다. 본 논문에서는 시계열 데이터에 특화된 순환신경망 기법인 RNN과 LSTM 모델을 이용하여 태양광 발전량을 예측하고 각 모델의 하이퍼 파라미터를 다르게 주어 비교 분석하였다. 그 결과 LSTM 모델이 RNN 모델보다 높은 예측력을 보였고, 손실 값이 0.1보다 낮은 높은 정확도를 보였다.

Comparative Study to Predict Power Generation using Meteorological Information for Expansion of Photovoltaic Power Generation System for Railway Infrastructure (철도인프라용 태양광발전시스템 확대를 위한 기상정보 활용 발전량 예측 비교 연구)

  • Yoo, Bok-Jong;Park, Chan-Bae;Lee, Ju
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.4
    • /
    • pp.474-481
    • /
    • 2017
  • When designing photovoltaic power plants in Korea, the prediction of photovoltaic power generation at the design phase is carried out using PVSyst, PVWatts (Overseas power generation prediction software), and overseas weather data even if the test site is a domestic site. In this paper, for a comparative study to predict power generation using weather information, domestic photovoltaic power plants in two regions were selected as target sites. PVsyst, which is a commercial power generation forecasting program, was used to compare the accuracy between the predicted value of power generation (obtained using overseas weather information (Meteonorm 7.1, NASA-SSE)) and the predicted value of power generation obtained by the Korea Meteorological Administration (KMA). In addition, we have studied ways to improve the prediction of power generation through comparative analysis of meteorological data. Finally, we proposed a revised solar power generation prediction model that considers climatic factors by considering the actual generation amount.

Comparative Analysis of Solar Power Generation Prediction AI Model DNN-RNN (태양광 발전량 예측 인공지능 DNN-RNN 모델 비교분석)

  • Hong, Jeong-Jo;Oh, Yong-Sun
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.3
    • /
    • pp.55-61
    • /
    • 2022
  • In order to reduce greenhouse gases, the main culprit of global warming, the United Nations signed the Climate Change Convention in 1992. Korea is also pursuing a policy to expand the supply of renewable energy to reduce greenhouse gas emissions. The expansion of renewable energy development using solar power led to the expansion of wind power and solar power generation. The expansion of renewable energy development, which is greatly affected by weather conditions, is creating difficulties in managing the supply and demand of the power system. To solve this problem, the power brokerage market was introduced. Therefore, in order to participate in the power brokerage market, it is necessary to predict the amount of power generation. In this paper, the prediction system was used to analyze the Yonchuk solar power plant. As a result of applying solar insolation from on-site (Model 1) and the Korea Meteorological Administration (Model 2), it was confirmed that accuracy of Model 2 was 3% higher. As a result of comparative analysis of the DNN and RNN models, it was confirmed that the prediction accuracy of the DNN model improved by 1.72%.

Recurrent Neural Network based Prediction System of Agricultural Photovoltaic Power Generation (영농형 태양광 발전소에서 순환신경망 기반 발전량 예측 시스템)

  • Jung, Seol-Ryung;Koh, Jin-Gwang;Lee, Sung-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.825-832
    • /
    • 2022
  • In this paper, we discuss the design and implementation of predictive and diagnostic models for realizing intelligent predictive models by collecting and storing the power output of agricultural photovoltaic power generation systems. Our model predicts the amount of photovoltaic power generation using RNN, LSTM, and GRU models, which are recurrent neural network techniques specialized for time series data, and compares and analyzes each model with different hyperparameters, and evaluates the performance. As a result, the MSE and RMSE indicators of all three models were very close to 0, and the R2 indicator showed performance close to 1. Through this, it can be seen that the proposed prediction model is a suitable model for predicting the amount of photovoltaic power generation, and using this prediction, it was shown that it can be utilized as an intelligent and efficient O&M function in an agricultural photovoltaic system.

An analysis methodology for the power generation of a solar power plant considering weather, location, and installation conditions (입지 및 설치방식에 따른 태양광 발전량 분석 방법에 관한 연구)

  • Byoung Noh Heo;Jae Hyun Lee
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.6
    • /
    • pp.91-98
    • /
    • 2023
  • The amount of power generation of a solar plant has a high correlation with weather conditions, geographical conditions, and the installation conditions of solar panels. Previous studies have found the elements which impacts the amount of power generation. Some of them found the optimal conditions for solar panels to generate the maximum amount of power. Considering the realistic constraints when installing a solar power plant, it is very difficult to satisfy the conditions for the maximum power generation. Therefore, it is necessary to know how sensitive the solar power generation amount is to factors affecting the power generation amount, so that plant owners can predict the amount of solar power generation when examining the installation of a solar power plant. In this study, we propose a polynomial regression analysis method to analyze the relationship between solar power plant's power generation and related factors such as weather, location, and installation conditions. Analysis data were collected from 10 solar power plants installed and operated in Daegu and Gyeongbuk. As a result of the analysis, it was found that the amount of power generation was affected by panel type, amount of insolation and shade. In addition, the power generation was affected by interaction of the installation angle and direction of the panel.