• Title/Summary/Keyword: 태양광발전의특성

Search Result 487, Processing Time 0.024 seconds

Maximum Power Point Tracking operation of Thermoelectric Module without Current Sensor (전류센서가 없는 열전모듈의 최대전력점 추적방식)

  • Kim, Tae-Kyung;Park, Dae-Su;Oh, Sung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.436-443
    • /
    • 2017
  • Recently, the development of new energy technologies has become a hot topic due to problems,such as global warming. Unlike renewable energy technologies, such as solar energy generation, solar power, and wind power, which are optimized to achieve medium or above output power, the output power of energy harvesting technology is very small and has not received much attention. On the other hand, as the mobile industry has been revitalized recently, the utility of energy harvesting technology has been reevaluated. In addition, the technology of tracking the maximum power point has been actively researched. This paper proposes a new MPPT(Maximum Power Point Tracking) control method for a TEM(thermoelectric module) for load resistance. The V-I curve characteristics and internal resistance of TEM were analyzed and the conventional MPPT control methods were compared. The P&O(Perturbation and Observation) control method is more accurate, but it is less economical than the CV (Constant Voltage)control method because it usestwo sensors to measure the voltage and current source. The CV control method is superior to the P&O control method in economic aspects because it uses only one voltage sensor but the MPP is not matched precisely. In this paper, a method wasdesigned to track the MPP of TEM combining the advantages of the two control method. The proposed MPPT control method wasverified by PSIM simulation and H/W implementation.

Wireless Bridge Health Monitoring System for Long-term Measurement of Small-sized Bridges (중소교량의 지리적 특성을 고려한 무선 전력 및 통신 기술 기반 교량 장기 계측시스템 구축 방안 연구)

  • Tae-Ho Kwon;Kyu-San Jung;Ki-Tae Park;Byeong-Cheol Kim;Jae-Hwan Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.4
    • /
    • pp.86-93
    • /
    • 2023
  • A bridge health monitoring technology is under development for the safety management of aged bridges. The bridge health monitoring technology has been developed mainly for single bridge management at a large scale, so it uses wire-based systems for power supply and data transfer. However, the wire-based systems need to be improved for the sporadically distributed small-sized bridges on local roads. This study proposed a wireless structural health monitoring system for small-sized bridges. The proposed monitoring system overcomes the limitations of wired systems by providing wireless power through solar power and utilizing LTE technology to transmit measurement data. In addition, a remote control system and power management plan were proposed to ensure the stability of the bridge measurement system. The proposed measurement system was installed on 32 bridges on fields and verified the operability by collecting 80.6% of measurement data for one year. The proposed system can support the health monitoring of aged bridges on local roads.

Recent Research Trends of Supercapacitors for Energy Storage Systems (에너지 저장시스템을 위한 슈퍼커패시터 최신 연구 동향)

  • Son, MyungSuk;Ryu, JunHyung
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.277-290
    • /
    • 2021
  • A supercapacitor, also called an ultracapacitor or an electrochemical capacitor, stores electrochemical energy by the adsorption/desorption of electrolytic ions or a fast and reversible redox reaction at the electrode surface, which is distinct from the chemical reaction of a battery. A supercapacitor features high specific power, high capacitance, almost infinite cyclability (~ 100,000 cycle), short charging time, good stability, low maintenance cost, and fast frequency response. Supercapacitors have been used in electronic devices to meet the requirements of rapid charging/discharging, such as for memory back-up, and uninterruptible power supply (UPS). Also, their use is being extended to transportation and large industry applications that require high power/energy density, such as for electric vehicles and power quality systems of smart grids. In power generation using intermittent power sources such as solar and wind, a supercapacitor is configured in the energy storage system together with a battery to compensate for the relatively slow charging/discharging time of the battery, to contribute to extending the lifecycle of the battery, and to improve the system power quality. This article provides a concise overview of the principles, mechanisms, and classification of energy storage of supercapacitors in accordance with the electrode materials. Also, it provides a review of the status of recent research and patent, product, and market trends in supercapacitor technology. There are many challenges to be solved to meet industrial demands such as for high voltage module technologies, high efficiency charging, safety, performance improvement, and competitive prices.

A Study of Effective Power Management for Infrafree Variable Message Sign (인프라 독립형 가변안내표지판의 효율적 전력 운영 방안 연구)

  • Lim, Se-Mi;Lee, Ji-Hoon;Park, Jun-Seok;Kim, Byung-Jong;Kim, Won-Kyu;Son, Seung-Neo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.6
    • /
    • pp.53-62
    • /
    • 2011
  • Although the demand of Variable Message Sign(VMS) has become pervasive in fulfilling the ITS policy, there are still several unsolved problematic issues. The most critical ones of them are inequality and inefficiency of providing traffic information. This paper proposes the Infra-free Variable Message Sign in order to provide useful informations such as road condition, weather, and traffic of the area, where constructing the infrastructure of communication and power supply is relatively very hard. First of all, the characteristics of infra-free Variable Message Sign are studied and analyzed in deep because of differences between normal Variable Message Sign and Infra-free Variable Message Sign in the configuration and the operating method due to the nature of the Infra-free Variable Message Sign. Futhermore, for effective power management of operating Infra-free Variable Message Sign with limited power acquired through stand-alone PV system, new battery connection structure and dynamically variable power managements for the differently shown messages on Variable Message Sign are proposed. The proposed structure in this paper can be applied to not only power management for Infra-free Variable Message Sign but also power management for the various applications using parallel connection battery system.

Performance Analysis of MPPT Techniques Based on Fuzzy Logic and P&O Algorithm in Actual Weather Environment (실제 날씨 환경에서 퍼지로직과 P&O 제어방식의 MPPT 동작 성능 분석)

  • Eom, Hyun-Sang;Yang, Hye-Ji;An, Hyun-Jun;Kwon, Youngsung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.291-298
    • /
    • 2020
  • The power generation of a PV system changes according to the weather variables, such as solar radiation and temperature. In particular, the output characteristics of photovoltaic systems, which are sensitive to changes in solar radiation, can be produced effectively and reliably in various weather conditions through MPPT (Maximum Power Point Tracking) control. This paper proposes a fuzzy-based MPPT control method to improve the efficiency and stability of the power production from a solar system. To verify the performance of the proposed method, under the same weather environment, the efficiency and stability of the newly proposed fuzzy logic were compared and evaluated empirically with P&O (Perturb and Observe), a representative algorithm of MPPT control. Furthermore, the circuits designed to improve the reliability and reliability of the hardware were manufactured from Printed Circuit Boards (PCB) to conduct experiments. Based on the results of the experiment during a certain period, the fuzzy-based MPPT proposed in this paper improved the efficiency by more than 4.4% compared to the MPPT based on the existing P&O algorithm and decreased the fluctuation width by more than 39.7% at the maximum power point.

Technical and Political Issues on Geothermal Energy Policy for Long-term Portfolio (지열에너지의 중장기 정책 포트폴리오를 위한 기술 및 정책적 접근방안 제시)

  • Kim, Kiyeol;Kim, Kyung-Hee;An, Hyungjun;Lim, Hye-Sook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.154-154
    • /
    • 2011
  • 화석연료의 가격 및 공급의 불안정과 온실가스감축 국제 규제 강화 등에 대한 대안으로 여기는 신 재생에너지는 높은 초기 투자 부담으로 인하여 관련기술의 연구개발과 보급정책 등 전과정에 걸친 정책 지원체계가 필요하다. 본 연구에서는 지열에너지를 이용하는 지열냉난방기술에 중점을 두고 이에 대한 중장기 정책 포트폴리오 작성을 위한 기술 및 정책적 접근방안을 제시하고자한다. 지열에너지의 가장 큰 특징은 기후 등에 영향을 크게 부하가 변하는 태양광, 풍력 등과 달리 일정한 부하를 유지함으로써 안정적인 에너지공급이 가능하다는 것이다. 또, 품질 측면에서도 화석연료를 이용한 기존의 연료보다 쾌적한 환경을 조성하여 고급에너지로 평가받고 있다. 반면, 설비를 갖추기 위한 천공, 히트펌프 설치 등에 큰 비용이 든다는 단점을 가지고 있다. 현재 히트펌프 제작기술은 국산화를 완료한 상태로 사실상 기술개발에 의한 큰 폭의 원가절감은 기대하기 힘든 상황이다. 하지만, 유사분야인 시스템 에어컨이 표준화 및 대량생산을 통한 시장 보급 확대로 보급단가가 하락한 것을 고려해 볼 때 이를 통한 가격하락은 어느 정도 기대해 볼 수 있을 것으로 생각된다. 에너지 외적인 측면에서 볼 때도 지열에너지의 공급은 상당한 의미를 갖는다. 건물 냉 난방용 이외에 다양한 용도의 개발을 통해 비닐하우스나 온실 등에 지열에너지를 이용할 경우 정부차원에서 농어촌에 대한 지원이 가능하다. 또, 기존의 에너지원을 조달하는데 어려움이 있는 산간, 도서지방에서는 도시지역보다 투자대비 큰 효과를 볼 수 있어 지역간 에너지 불균형 해도에도 도움이 될 수 있다. 이와같은 지열에너지의 특성에 따라 향후 발전방향을 정리해 보았다. 핵심기술인 지열 히트펌프의 산업구조와 시장 보급 확대를 통한 가격하락을 기대한다. 지역개발 및 고립지역에서 타 신 재생에너지와 함께 독립적인 전력, 냉난방 등의 완전 에너지 공급시스템을 갖출 수 있다. 또한 특수 작물 등의 고급 농수산물 생산등의 용도개발을 통해 지열에너지 공급역량을 성장시킬 수 있을 것이다. 이와 함께 중장기 비젼을 제시하기 위해 추진되어야 할 연구과제로는 시장 보급 확대에 따른 가격경쟁력 도달 가능성에 대한 연구를 통해 산업육성 방안 마련, 타 신 재생에너지기술과 복합 설치에 의한 시너지 효과 및 이에따른 초기 투자비 증가에 대한 대책, 보급 잠재량 조사, 지열시스템의 자금 조달 및 관련 정책 검토 등이 있을 수 있다.

  • PDF

A Study on the Field Application of a Small Dynamic Cone Penetration Tester Using Hammer Automatic Strike and Penetration Measurement (해머 타격과 관입량 측정이 자동화된 소형 동적콘관입시험기의 현장 적용성 연구)

  • Hwiyoung Chae ;Soondal Kwon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.12
    • /
    • pp.5-11
    • /
    • 2023
  • Economic damage is occurring due to landslides and debris flows that occur when the ground artificially created for roads or photovoltaic power generation facilities is weakened by rainfall such as torrential rain. In order to understand the stability of the artificially created ground, it is very important to check the ground information such as the compositional state and mechanical characteristics of the stratum. However, since most of the investigation sites are steep slopes or there are no access roads, it is not easy to enter the drilling equipment commonly used to check ground information and perform standard penetration tests. In this study, a dynamic cone penetration test (DCP) device using a miniaturized auger drilling equipment and an automatic drop device was developed to check the cone resistance value and the dynamic cone penetration test value and analyze the correlation with the standard penetration test value to confirm its applicability at the mountain solar power generation site. As a result, the cone resistance value is qd = 0.46 N and the dynamic cone penetration test value is Nd = 1.58 N, confirming a value similar to the results of existing researchers to secure its reliability.